227 resultados para membrane electrode assembly


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary sensory cortex discriminates incoming sensory information and generates multiple processing streams toward other cortical areas. However, the underlying cellular mechanisms remain unknown. Here, by making whole-cell recordings in primary somatosensory barrel cortex (S1) of behaving mice, we show that S1 neurons projecting to primary motor cortex (M1) and those projecting to secondary somatosensory cortex (S2) have distinct intrinsic membrane properties and exhibit markedly different membrane potential dynamics during behavior. Passive tactile stimulation evoked faster and larger postsynaptic potentials (PSPs) in M1-projecting neurons, rapidly driving phasic action potential firing, well-suited for stimulus detection. Repetitive active touch evoked strongly depressing PSPs and only transient firing in M1-projecting neurons. In contrast, PSP summation allowed S2-projecting neurons to robustly signal sensory information accumulated during repetitive touch, useful for encoding object features. Thus, target-specific transformation of sensory-evoked synaptic potentials by S1 projection neurons generates functionally distinct output signals for sensorimotor coordination and sensory perception.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is a relatively poorly characterized integral membrane protein predicted to comprise four transmembrane segments in its central portion. Here, we describe a novel determinant for membrane association represented by amino acids (aa) 40 to 69 in the N-terminal portion of NS4B. This segment was sufficient to target and tightly anchor the green fluorescent protein to cellular membranes, as assessed by fluorescence microscopy as well as membrane extraction and flotation analyses. Circular dichroism and nuclear magnetic resonance structural analyses showed that this segment comprises an amphipathic alpha-helix extending from aa 42 to 66. Attenuated total reflection infrared spectroscopy and glycosylation acceptor site tagging revealed that this amphipathic alpha-helix has the potential to traverse the phospholipid bilayer as a transmembrane segment, likely upon oligomerization. Alanine substitution of the fully conserved aromatic residues on the hydrophobic helix side abrogated membrane association of the segment comprising aa 40 to 69 and disrupted the formation of a functional replication complex. These results provide the first atomic resolution structure of an essential membrane-associated determinant of HCV NS4B.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parvalbumin-immunoreactive interneurons are surrounded by perineuronal nets, containing molecules of the extracellular matrix (e.g. tenascin-R). Furthermore, they seem to have a special cytoskeleton composed of, among others, ankyrinR and beta Rspectrin. In the present developmental study we showed that the intracellular markers parvalbumin, ankyrinR and beta Rspectrin as well as Vicia Villosa agglutinin, an extracellular marker for perineuronal nets, appeared in the second postnatal week. In the third postnatal week, ankyrinR and beta R spectrin were present in the parvalbumin-positive interneurons. Tenascin-R appeared in a similar topographic distribution as the intracellular markers. The adult pattern was established upon the end of the fourth postnatal week. Our results indicate that cytoskeletal maturity maybe a prerequisite for the organization of perineuronal nets of extracellular matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The latent membrane protein 1 (LMP1) encoded by the Epstein-Barr virus acts like a constitutively activated receptor of the tumor necrosis factor receptor (TNFR) family and is enriched in lipid rafts. We showed that LMP1 is targeted to lipid rafts in transfected HEK 293 cells, and that the endogenous TNFR-associated factor 3 binds LMP1 and is recruited to lipid rafts upon LMP1 expression. An LMP1 mutant lacking the C-terminal 55 amino acids (Cdelta55) behaves like the wild-type (WT) LMP1 with respect to membrane localization. In contrast, a mutant with a deletion of the 25 N-terminal residues (Ndelta25) does not concentrate in lipid rafts but still binds TRAF3, demonstrating that cell localization of LMP1 was not crucial for TRAF3 localization. Moreover, Ndelta25 inhibited WT LMP1-mediated induction of the transcription factors NF-kappaB and AP-1. Morphological data indicate that Ndelta25 hampers WT LMP1 plasma membrane localization, thus blocking LMP1 function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fundamental processes of membrane fission and fusion determine size and copy numbers of intracellular organelles. Although SNARE proteins and tethering complexes mediate intracellular membrane fusion, fission requires the presence of dynamin or dynamin-related proteins. Here we study these reactions in native yeast vacuoles and find that the yeast dynamin homologue Vps1 is not only an essential part of the fission machinery, but also controls membrane fusion by generating an active Qa SNARE-tethering complex pool, which is essential for trans-SNARE formation. Our findings provide new insight into the role of dynamins in membrane fusion by directly acting on SNARE proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The promastigote surface protease (PSP) of Leishmania is a neutral membrane-bound zinc enzyme. The protease has no exopeptidase activity and does not cleave a large selection of substrates with chromogenic and fluorogenic leaving groups at the P1' site. The substrate specificity of the enzyme was studied by using natural and synthetic peptides of known amino acid sequence. The identification of 11 cleavage sites indicates that the enzyme preferentially cleaves peptides at the amino side when hydrophobic residues are in the P1' site and basic amino acid residues in the P2' and P3' sites. In addition, tyrosine residues are commonly found at the P1 site. Hydrolysis is not, however, restricted to these residues. These results have allowed the synthesis of a model peptide, H2N-L-I-A-Y-L-K-K-A-T-COOH, which is cleaved by PSP between the tyrosine and leucine residues with a kcat/Km ratio of 1.8 X 10(6) M-1 s-1. Furthermore, a synthetic nonapeptide overlapping the last four amino acids of the prosequence and the first five residues of mature PSP was found to be cleaved by the protease at the expected site to release the mature enzyme. This result suggests a possible autocatalytic mechanism for the activation of the protease. Finally, the hydroxamate-derivatized dipeptide Cbz-Tyr-Leu-NHOH was shown to inhibit PSP competitively with a KI of 17 microM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate chromosome segregation during mitosis is temporally and spatially coordinated by fidelity-monitoring checkpoint systems. Deficiencies in these checkpoint systems can lead to chromosome segregation errors and aneuploidy, and promote tumorigenesis. Here, we report that the TRAF-interacting protein (TRAIP), a ubiquitously expressed nucleolar E3 ubiquitin ligase important for cellular proliferation, is localized close to mitotic chromosomes. Its knockdown in HeLa cells by RNA interference (RNAi) decreased the time of early mitosis progression from nuclear envelope breakdown (NEB) to anaphase onset and increased the percentages of chromosome alignment defects in metaphase and lagging chromosomes in anaphase compared with those of control cells. The decrease in progression time was corrected by the expression of wild-type but not a ubiquitin-ligase-deficient form of TRAIP. TRAIP-depleted cells bypassed taxol-induced mitotic arrest and displayed significantly reduced kinetochore levels of MAD2 (also known as MAD2L1) but not of other spindle checkpoint proteins in the presence of nocodazole. These results imply that TRAIP regulates the spindle assembly checkpoint, MAD2 abundance at kinetochores and the accurate cellular distribution of chromosomes. The TRAIP ubiquitin ligase activity is functionally required for the spindle assembly checkpoint control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In neurons, soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins drive the fusion of synaptic vesicles to the plasma membrane through the formation of a four-helix SNARE complex. Members of the Sec1/Munc18 protein family regulate membrane fusion through interactions with the syntaxin family of SNARE proteins. The neuronal protein Munc18a interacts with a closed conformation of the SNARE protein syntaxin1a (Syx1a) and with an assembled SNARE complex containing Syx1a in an open conformation. The N-peptide of Syx1a (amino acids 1-24) has been implicated in the transition of Munc18a-bound Syx1a to Munc18a-bound SNARE complex, but the underlying mechanism is not understood. Here we report the X-ray crystal structures of Munc18a bound to Syx1a with and without its native N-peptide (Syx1aΔN), along with small-angle X-ray scattering (SAXS) data for Munc18a bound to Syx1a, Syx1aΔN, and Syx1a L165A/E166A (LE), a mutation thought to render Syx1a in a constitutively open conformation. We show that all three complexes adopt the same global structure, in which Munc18a binds a closed conformation of Syx1a. We also identify a possible structural connection between the Syx1a N-peptide and SNARE domain that might be important for the transition of closed-to-open Syx1a in SNARE complex assembly. Although the role of the N-peptide in Munc18a-mediated SNARE complex assembly remains unclear, our results demonstrate that the N-peptide and LE mutation have no effect on the global conformation of the Munc18a-Syx1a complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific interactions of the pairs laminin binding protein (LBP)-purified tick-borne encephalitis viral surface protein E and certain recombinant fragments of this protein, as well as West Nile viral surface protein E and certain recombinant fragments of that protein, are studied by combined methods of single-molecule dynamic force spectroscopy (SMDFS), enzyme immunoassay and optical surface waves-based biosensor measurements. The experiments were performed at neutral pH (7.4) and acid pH (5.3) conditions. The data obtained confirm the role of LBP as a cell receptor for two typical viral species of the Flavivirus genus. A comparison of these data with similar data obtained for another cell receptor of this family, namely human αVβ3 integrin, reveals that both these receptors are very important. Studying the specific interaction between the cell receptors in question and specially prepared monoclonal antibodies against them, we could show that both interaction sites involved in the process of virus-cell interaction remain intact at pH 5.3. At the same time, for these acid conditions characteristic for an endosome during flavivirus-cell membrane fusion, SMDFS data reveal the existence of a force-induced (effective already for forces as small as 30-70 pN) sharp globule-coil transition for LBP and LBP-fragments of protein E complexes. We argue that this conformational transformation, being an analog of abrupt first-order phase transition and having similarity with the famous Rayleigh hydrodynamic instability, might be indispensable for the flavivirus-cell membrane fusion process. Copyright © 2014 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of cell type-specific Na+,K+-ATPase isozymes in function-related glucose metabolism was studied using differentiated rat brain cell aggregate cultures. In mixed neuron-glia cultures, glucose utilization, determined by measuring the rate of radiolabeled 2-deoxyglucose accumulation, was markedly stimulated by the voltage-dependent sodium channel agonist veratridine (0.75 micromol/L), as well as by glutamate (100 micromol/L) and the ionotropic glutamate receptor agonist N-methyl-D-aspartate (NMDA) (10 micromol/L). Significant stimulation also was elicited by elevated extracellular potassium (12 mmol/L KCl), which was even more pronounced at 30 mmol/L KCl. In neuron-enriched cultures, a similar stimulation of glucose utilization was obtained with veratridine, specific ionotropic glutamate receptor agonists, and 30 mmol/L but not 12 mmol/L KCl. The effects of veratridine, glutamate, and NMDA were blocked by specific antagonists (tetrodotoxin, CNQX, or MK801, respectively). Low concentrations of ouabain (10(-6) mol/L) prevented stimulation by the depolarizing agents but reduced only partially the response to 12 mmol/L KCl. Together with previous data showing cell type-specific expression of Na+,K+-ATPase subunit isoforms in these cultures, the current results support the view that distinct isoforms of Na+,K+-ATPase regulate glucose utilization in neurons in response to membrane depolarization, and in glial cells in response to elevated extracellular potassium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that the cccB gene, identified in the Bacillus subtilis genome sequence project, is the structural gene for a 10-kDa membrane-bound cytochrome c(551) lipoprotein described for the first time in B. subtilis. Apparently, CccB corresponds to cytochrome c(551) of the thermophilic bacterium Bacillus PS3. The heme domain of B. subtilis cytochrome c(551) is very similar to that of cytochrome c(550), a protein encoded by the cccA gene and anchored to the membrane by a single transmembrane polypeptide segment. Thus, B. subtilis contains two small, very similar, c-type cytochromes with different types of membrane anchors. The cccB gene is cotranscribed with the yvjA gene, and transcription is repressed by glucose. Mutants deleted for cccB or yvjA-cccB show no apparent growth, sporulation, or germination defect. YvjA is not required for the synthesis of cytochrome c(551), and its function remains unknown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Streptococcus gordonii est une bactérie colonisatrice naturelle de la cavité buccale de l'homme. Bien que normalement commensale, elle peut causer des infections graves, telles que des bactériémies ou des endocardites infectieuses. La pénicilline étant un des traitements privilégiés dans de tels cas, l'augmentation rapide et globale des résistances à cet antibiotique devient inquiétante. L'étude de la physiologie et des bases génétiques de ces résistances chez S. gordonii s'avère donc importante. Les cibles moléculaires privilégiées de la pénicilline G et des β-lactames sont les penicilllin-binding proteins (PBPs). Ces enzymes associées à la membrane ont pour rôle de catalyser les réactions de transpeptidation et de transglycosylation, qui constituent les dernières étapes de la biosynthèse du peptidoglycan (PG). Elles sont définies comme classe A ou B selon leur capacité d'assurer soit les deux réactions, soit uniquement la transpeptidation. Les β-lactames inhibent le domaine transpeptidase de toutes les PBPs, entraînant l'inhibition de la synthèse du PG, l'inhibition de la croissance, et finalement la mort cellulaire. Chez les streptocoques, les PBPs sont aussi les premiers déterminants de la résistance à la pénicilline. De plus, elles sont impliquées dans la morphologie bactérienne, en raison de leur rôle crucial dans la formation du PG. Le but de ce travail était de caractériser les PBPs de S. gordonii et d'étudier leurs fonctions dans la vie végétative de la bactérie ainsi que durant le développement de la résistance à la pénicilline. Premièrement, des mutants auxquels il manque une ou deux PBP(s) ont été construits. Leur étude - au niveau physiologique, biochimique et morphologique - a montré le caractère essentiel ou dispensable de chaque protéine, ainsi que certaines de leurs fonctions potentielles. Deuxièmement, des mutants résistants à la pénicilline ont été générés. Leur caractérisation a montré l'importance des mutations dans les PBPs ainsi que dans d'autres gènes encore inconnus, de même que le rôle crucial des PBPs de classe A dans le développement de la résistance à la pénicilline. Des expériences supplémentaires sur des isolats résistants ont aussi prouvé que la résistance a un coût en terme de fitness, coût que S. gordonii parvient à compenser par des mécanismes d'adaptation. Finalement, les promoteurs des gènes des PBPs ont été déterminés et leur expression a été étudiée grâce au gène de luciférase. Il a ainsi été montré que la résistance à la pénicilline entraîne non seulement des altérations au niveau des protéines, mais aussi au niveau de la régulation des gènes. De plus, la pénicilline génère directement des modifications dans l'expression de PBPs spécifiques. Summary Streptococcus gordonii is a normal inhabitant of the human oral cavity and a pioneer colonizer of teeth. Although usually considered as a commensal, this organism can cause life-threatening infections such as bacteraemia or endocarditis. Since penicillin is one of the preferential treatments for such pathologies, the rapid and general increase of antibiotic resistance in the overall population becomes an issue. Thus, studying the physiologic and genetic bases of such a resistance in S. gordonii is of interest. The primary molecular targets of penicillin G and other β-lactams are the so called penicillin-binding proteins (PBPs). These are membrane-associated proteins that catalyze the last steps in peptidoglycan (PG) biosynthesis, namely transpeptidation and transglycosylation. Depending on their capacity to catalyze either reactions or only transpeptidation, they are considered as class A or class B PBPs, respectively. β-lactam antibiotics inhibit the transpeptidase domain of both of these classes of enzymes, resulting in inhibition of PG assembly, inhibition of bacterial growth, and ultimately leading to cell death. In streptococci, PBPs are also the primary determinants of penicillin-resistance. Moreover, because of their crucial role in PG formation, they are implicated in fundamental aspects of cell morphology. The goal of this work was thus to characterize S. gordonii PBPs and to explore their functions in terms of vegetative life and penicillin-resistance development. First, single and double PBP-inactivated mutants were generated and their effect on the bacterial physiology, cell wall biochemistry and ultrastructural morphology was assessed. This demonstrated the essentiality or dispensability of each protein for bacterial life. Second, penicillin-resistant mutants were generated by cyclic exposure to increasing concentrations of the drug. Characterization of these mutants pointed out the importance of both PBP and non-PBP mutations, as well as the crucial role of the class A PBPs in the development of penicillin-resistance. Further experiments on resistant isolates demonstrated the fitness cost of this resistance, but also the capacity of S. gordonii to adapt and regain the fitness of the wild-type. Finally, the promoters of PBP genes were determined and their expression was monitored using luciferase fusions. This showed that penicillin-resistance, in addition to modifications at the level of the protein, also triggered genetic alterations. Moreover, penicillin itself generated modifications in the expression of specific PBPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutrophils are recruited to the site of parasite inoculation within a few hours of infection with the protozoan parasite Leishmania major. In C57BL/6 mice, which are resistant to infection, neutrophils are cleared from the site of s.c. infection within 3 days, whereas they persist for at least 10 days in susceptible BALB/c mice. In the present study, we investigated the role of macrophages (MPhi) in regulating neutrophil number. Inflammatory cells were recruited by i.p. injection of either 2% starch or L. major promastigotes. Neutrophils were isolated and cultured in the presence of increasing numbers of MPhi. Extent of neutrophil apoptosis positively correlated with the number of MPhi added. This process was strictly dependent on TNF because MPhi from TNF-deficient mice failed to induce neutrophil apoptosis. Assays using MPhi derived from membrane TNF knock-in mice or cultures in Transwell chambers revealed that contact with MPhi was necessary to induce neutrophil apoptosis, a process requiring expression of membrane TNF. L. major was shown to exacerbate MPhi-induced apoptosis of neutrophils, but BALB/c MPhi were not as potent as C57BL/6 MPhi in this induction. Our results emphasize the importance of MPhi-induced neutrophil apoptosis, and membrane TNF in the early control of inflammation.