39 resultados para maximum loading


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Arabidopsis mutant pho1 is deficient in the transfer of Pi from root epidermal and cortical cells to the xylem. The PHO1 gene was identified by a map-based cloning strategy. The N-terminal half of PHO1 is mainly hydrophilic, whereas the C-terminal half has six potential membrane-spanning domains. PHO1 shows no homology with any characterized solute transporter, including the family of H(+)-Pi cotransporters identified in plants and fungi. PHO1 shows highest homology with the Rcm1 mammalian receptor for xenotropic murine leukemia retroviruses and with the Saccharomyces cerevisiae Syg1 protein involved in the mating pheromone signal transduction pathway. PHO1 is expressed predominantly in the roots and is upregulated weakly under Pi stress. Studies with PHO1 promoter-beta-glucuronidase constructs reveal predominant expression of the PHO1 promoter in the stelar cells of the root and the lower part of the hypocotyl. There also is beta-glucuronidase staining of endodermal cells that are adjacent to the protoxylem vessels. The Arabidopsis genome contains 10 additional genes showing homology with PHO1. Thus, PHO1 defines a novel class of proteins involved in ion transport in plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A successful bone tissue engineering strategy entails producing bone-scaffold constructs with adequate mechanical properties. Apart from the mechanical properties of the scaffold itself, the forming bone inside the scaffold also adds to the strength of the construct. In this study, we investigated the role of in vivo cyclic loading on mechanical properties of a bone scaffold. We implanted PLA/β-TCP scaffolds in the distal femur of six rats, applied external cyclic loading on the right leg, and kept the left leg as a control. We monitored bone formation at 7 time points over 35 weeks using time-lapsed micro-computed tomography (CT) imaging. The images were then used to construct micro-finite element models of bone-scaffold constructs, with which we estimated the stiffness for each sample at all time points. We found that loading increased the stiffness by 60% at 35 weeks. The increase of stiffness was correlated to an increase in bone volume fraction of 18% in the loaded scaffold compared to control scaffold. These changes in volume fraction and related stiffness in the bone scaffold are regulated by two independent processes, bone formation and bone resorption. Using time-lapsed micro-CT imaging and a newly-developed longitudinal image registration technique, we observed that mechanical stimulation increases the bone formation rate during 4-10 weeks, and decreases the bone resorption rate during 9-18 weeks post-operatively. For the first time, we report that in vivo cyclic loading increases mechanical properties of the scaffold by increasing the bone formation rate and decreasing the bone resorption rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this study was to investigate the effect of sodium intake on renal tissue oxygenation in humans. To this purpose, we measured renal hemodynamics, renal sodium handling, and renal oxygenation in normotensive (NT) and hypertensive (HT) subjects after 1 week of a high-sodium and 1 week of a low-sodium diet. Renal oxygenation was measured using blood oxygen level-dependent magnetic resonance. Tissue oxygenation was determined by the measurement of R2* maps on 4 coronal slices covering both kidneys. The mean R2* values in the medulla and cortex were calculated, with a low R2* indicating a high tissue oxygenation. Ten male NT (mean age: 26.5+/-7.4 years) and 8 matched HT subjects (mean age: 28.8+/-5.7 years) were studied. Cortical R2* was not different under the 2 conditions of salt intake. Medullary R2* was significantly lower under low sodium than high sodium in both NT and HT subjects (28.1+/-0.8 versus 31.3+/-0.6 s(-1); P<0.05 in NT; and 27.9+/-1.5 versus 30.3+/-0.8 s(-1); P<0.05, in HT), indicating higher medullary oxygenation under low-sodium conditions. In NT subjects, medullary oxygenation was positively correlated with proximal reabsorption of sodium and negatively with absolute distal sodium reabsorption, but not with renal plasma flow. In HT subjects, medullary oxygenation correlated with the 24-hour sodium excretion but not with proximal or with the distal handling of sodium. These data demonstrate that dietary sodium intake influences renal tissue oxygenation, low sodium intake leading to an increased renal medullary oxygenation both in normotensive and young hypertensive subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute myocardial dysfunction is a typical manifestation of septic shock. Experimentally, the administration of endotoxin [lipopolysacharride (LPS)] to laboratory animals is frequently used to study such dysfunction. However, a majority of studies used load-dependent indexes of cardiac function [including ejection fraction (EF) and maximal systolic pressure increment (dP/dt(max))], which do not directly explore cardiac inotropism. Therefore, we evaluated the direct effects of LPS on myocardial contractility, using left ventricular (LV) pressure-volume catheters in mice. Male BALB/c mice received an intraperitoneal injection of E. coli LPS (1, 5, 10, or 20 mg/kg). After 2, 6, or 20 h, cardiac function was analyzed in anesthetized, mechanically ventilated mice. All doses of LPS induced a significant drop in LV stroke volume and a trend toward reduced cardiac output after 6 h. Concomitantly, there was a significant decrease of LV preload (LV end-diastolic volume), with no apparent change in LV afterload (evaluated by effective arterial elastance and systemic vascular resistance). Load-dependent indexes of LV function were markedly reduced at 6 h, including EF, stroke work, and dP/dt(max). In contrast, there was no reduction of load-independent indexes of LV contractility, including end-systolic elastance (ejection phase measure of contractility) and the ratio dP/dt(max)/end-diastolic volume (isovolumic phase measure of contractility), the latter showing instead a significant increase after 6 h. All changes were transient, returning to baseline values after 20 h. Therefore, the alterations of cardiac function induced by LPS are entirely due to altered loading conditions, but not to reduced contractility, which may instead be slightly increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the regulation of connexin expression by fluid pressure, we have studied the effects of elevated transmural urine pressure on Connexin43 (Cx43) and Cx26. We chose to focus on these two proteins out of the five connexins (Cx26, 43, 40, 37, and 45) which we found by RT-PCR to be expressed in the rat bladder, since in situ hybridization and immunofluorescence showed that Cx43 is the predominant connexin expressed by smooth muscle cells (SMC), whereas Cx26 is abundantly expressed only in the latter cell type. To evaluate whether these connexins are affected by changes in transmural urine pressure, we used a rat model of bladder outlet obstruction, in which a ligature is placed around the urethra. Under conditions of increased fluid pressure due to urine retention, we observed that the expression of both Cx43 and Cx26 increased at both transcript and protein levels, reaching a maximum 7-9 h after the ligature. Further analysis revealed that these changes were accounted for by a fourfold increase in Cx43 mRNA of SMC but not urothelial cell and by a fivefold increase in Cx26 mRNA of urothelium. Scrape-loading of propidium iodide showed that the latter change was paralleled by a twofold increase in coupling between urothelial cells. The data show that Cx43 and Cx26 are differentially regulated during bladder outlet obstruction and contribute to the response of the bladder wall to increased voiding pressure, possibly to control its elasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: This study aimed at examining the influence of different playing surfaces on in-shoe loading patterns in each foot (back and front) separately during the first serve in tennis. METHODS: Ten competitive tennis players completed randomly five first (ie, flat) serves on two different playing surfaces: clay vs GreenSet. Maximum and mean force, peak and mean pressure, mean area, contact area and relative load were recorded by Pedar insoles divided into 9 areas for analysis. RESULTS: Mean pressure was significantly lower (123 ± 30 vs 98 ± 26 kPa; -18.5%; P < .05) on clay than on GreenSet when examining the entire back foot. GreenSet induced higher mean pressures under the medial forefoot, lateral forefoot and hallux of the back foot (+9.9%, +3.5% and +15.9%, respectively; both P < .01) in conjunction with a trend toward higher maximal forces in the back hallux (+15.1%, P = .08). Peak pressures recorded under the central and lateral forefoot (+21.8% and +25.1%; P < .05) of the front foot but also the mean area values measured on the back medial and lateral midfoot were higher (P < .05) on clay. No significant interaction between foot region and playing surface on relative load was found. CONCLUSIONS: It is suggested that in-shoe loading parameters characterizing the first serve in tennis are adjusted according to the ground type surface. A lesser asymmetry in peak (P < .01) and mean (P < .001) pressures between the two feet was found on clay, suggesting a greater need for stability on this surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acute renal tubular effects of two pharmacologically distinct angiotensin II receptor antagonists have been evaluated in normotensive volunteers on various salt diets. In the first study, the renal response to a single oral dose of losartan (100 mg) was assessed in subjects on a low (50 mmol Na/d) and on a high (200 mmol Na/d) salt intake. In a second protocol, the renal effects of 50 mg irbesartan were investigated in subjects receiving a 100 mmol Na/d diet. Both angiotensin II antagonists induced a significant increase in urinary sodium excretion. With losartan, a modest, transient increase in urinary potassium and a significant increase in uric acid excretion were found. In contrast, no change in potassium and uric acid excretions were observed with irbesartan, suggesting that the effects of losartan on potassium and uric acid are due to the intrinsic pharmacologic properties of losartan rather than to the specific blockade of renal angiotensin II receptors. Assessment of segmental sodium reabsorption using lithium as a marker of proximal tubular reabsorption demonstrated a decreased distal reabsorption of sodium with both antagonists. A direct proximal tubular natriuretic effect of the angiotensin II antagonist could be demonstrated only with irbesartan. This apparent discrepancy allowed us to reveal the importance of acute water loading as a possible confounding factor in renal studies. The results of the present analysis show that acute water loading per se may enhance renal sodium excretion and hence modify the level of activity of the renin-angiotensin system expected from a given sodium diet. Since acute water loading is a common practice in clinical renal studies, this confounding factor should be taken into account when investigating the renal effects of vasoactive systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: The combination of embolic beads with a multitargeted tyrosine kinase inhibitor that inhibits tumor vessel growth is suggested as an alternative and improvement to the current standard doxorubicin-eluting beads for use in transarterial chemoembolization. This study demonstrates the in vitro loading and release kinetics of sunitinib using commercially available embolization microspheres and evaluates the in vitro biologic efficacy on cell cultures and the resulting in vivo pharmacokinetics profiles in an animal model. MATERIALS AND METHODS: DC Bead microspheres, 70-150 µm and 100-300 µm (Biocompatibles Ltd., Farnham, United Kingdom), were loaded by immersion in sunitinib solution. Drug release was measured in saline in a USP-approved flow-through apparatus and quantified by spectrophotometry. Activity after release was confirmed in cell culture. For pharmacokinetics and in vivo toxicity evaluation, New Zealand white rabbits received sunitinib either by intraarterial injection of 100-300 µm sized beads or per os. Plasma and liver tissue drug concentrations were assessed by liquid chromatography-tandem mass spectroscopy. RESULTS: Sunitinib loading on beads was close to complete and homogeneous. A total release of 80% in saline was measured, with similar fast-release profiles for both sphere sizes. After embolization, drug plasma levels remained below the therapeutic threshold (< 50 ng/mL), but high concentrations at 6 hours (14.9 µg/g) and 24 hours (3.4 µg/g) were found in the liver tissue. CONCLUSIONS: DC Bead microspheres of two sizes were efficiently loaded with sunitinib and displayed a fast and almost complete release in saline. High liver drug concentrations and low systemic levels indicated the potential of sunitinib-eluting beads for use in embolization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to determine changes in spring-mass model (SMM) characteristics, plantar pressures, and muscle activity induced by the repetition of sprints in soccer-specific conditions; i.e., on natural grass with soccer shoes. Thirteen soccer players performed 6 × 20 m sprints interspersed with 20 s of passive recovery. Plantar pressure distribution was recorded via an insole pressure recorder device divided into nine areas for analysis. Stride temporal parameters allowed to estimate SMM characteristics. Surface electromyographic activity was monitored for vastus lateralis, rectus femoris, and biceps femoris muscles. Sprint time, contact time, and total stride duration lengthened from the first to the last repetition (+6.7, +12.9, and +9.3%; all P < 0.05), while flight time, swing time, and stride length remained constant. Stride frequency decrease across repetitions approached significance (-6.8%; P = 0.07). No main effect of the sprint number or any significant interaction between sprint number and foot region was found for maximal force, mean force, peak pressure and mean pressure (all P > 0.05). Center of mass vertical displacement increased (P < 0.01) with time, together with unchanged (both P > 0.05) peak vertical force and leg compression. Vertical stiffness decreased (-15.9%; P < 0.05) across trials, whereas leg stiffness changes were not significant (-5.9%; P > 0.05). Changes in root mean square activity of the three tested muscles over sprint repetitions were not significant. Although repeated sprinting on natural grass with players wearing soccer boots impairs their leg-spring behavior (vertical stiffness), there is no substantial concomitant alterations in muscle activation levels or plantar pressure patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: This study aimed to determine adjustments in spring-mass model characteristics, plantar loading and foot mobility induced by an exhaustive run. DESIGN: Within-participants repeated measures. METHODS: Eleven highly-trained adolescent middle-distance runners ran to exhaustion on a treadmill at a constant velocity corresponding to 95% of velocity associated with VO₂max (17.8 ± 1.4 kmh(-1), time to exhaustion=8.8 ± 3.4 min). Contact time obtained from plantar pressure sensors was used to estimate spring-mass model characteristics, which were recorded (during 30 s) 1 min after the start and prior to exhaustion using pressure insoles. Foot mobility magnitude (a composite measure of vertical and medial-lateral mobility of the midfoot) was measured before and after the run. RESULTS: Mean contact area (foot to ground), contact time, peak vertical ground reaction force, centre of mass vertical displacement and leg compression increased significantly with fatigue, while flight time, leg stiffness and mean pressure decreased. Leg stiffness decreased because leg compression increased to a larger extent than peak vertical ground reaction forces. Step length, step frequency and foot mobility magnitude did not change at exhaustion. CONCLUSIONS: The stride pattern of adolescents when running on a treadmill at high constant velocity deteriorates near exhaustion, as evidenced by impaired leg-spring behaviour (leg stiffness) and altered plantar loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To explore how foot growth relates to musculoskeletal loading in children with Prader-Willi syndrome (PWS). STUDY DESIGN: In 37 children with PWS, foot length (FL) before and after 6 years of growth hormone therapy (GHT) was retrospectively evaluated with parental and sibling's FL, height, and factors reflecting musculoskeletal loading, such as weight for height (WfH), lean body mass (LBM; dual energy X-ray absorptiometry, deuterium labeled water), physical activity (accellerometry), and walk age. Because of the typically biphasic evolution of body mass and the late walk age in PWS, 2 age groups were separated (group 1, >2.5 years; group 2, < or =2.5 years). RESULTS: Children with PWS normalized height, but not FL after 6 years of GHT. Parental FL correlation with PWS's FL was lower than with sibling's FL. In group 1, FL positively correlated with WfH, LBM, and physical activity. In group 2, FL negatively correlated with age at onset of independent ambulation. Foot catch-up growth with GHT was slower in group 2 compared with group 1. CONCLUSION: In PWS, FL is positively associated with musculoskeletal loading. Small feet in children with PWS before and during long-term GHT may be more than just another dysmorphic feature, but may possibly reflect decreased musculoskeletal loading influencing foot growth and genetic and endocrine factors.