19 resultados para localized electrochemical analysis
Resumo:
BACKGROUND: The quantification of total (free+sulfated) metanephrines in urine is recommended to diagnose pheochromocytoma. Urinary metanephrines include metanephrine itself, normetanephrine and methoxytyramine, mainly in the form of sulfate conjugates (60-80%). Their determination requires the hydrolysis of the sulfate ester moiety to allow electrochemical oxidation of the phenolic group. Commercially available urine calibrators and controls contain essentially free, unhydrolysable metanephrines which are not representative of native urines. The lack of appropriate calibrators may lead to uncertainty regarding the completion of the hydrolysis of sulfated metanephrines, resulting in incorrect quantification. METHODS: We used chemically synthesized sulfated metanephrines to establish whether the procedure most frequently recommended for commercial kits (pH 1.0 for 30 min over a boiling water bath) ensures their complete hydrolysis. RESULTS: We found that sulfated metanephrines differ in their optimum pH to obtain complete hydrolysis. Highest yields and minimal variance were established for incubation at pH 0.7-0.9 during 20 min. CONCLUSION: Urinary pH should be carefully controlled to ensure an efficient and reproducible hydrolysis of sulfated metanephrines. Synthetic sulfated metanephrines represent the optimal material for calibrators and proficiency testing to improve inter-laboratory accuracy.
Resumo:
Introduction: EORTC trial 22991 randomly assessed the addition of concomitant and adjuvant short-term hormonal therapy to curative conformal/intensity-modulated radiotherapy (RT) for intermediate risk localized prostate cancer. We report the acute toxicity (assessed weekly during RT) for the organs at risk (genito-urinary (GU) and gastro-intestinal (GI)) in relation to radiation parameters. Material and Methods: Eligibility criteria were age _80 years, PSA _ 50 ng/ml, N0M0 and either tumour stage cT2a (1997 UICC TNM) or cT1b-c combined with PSA_10 ng/ml and/or Gleason score _7. We report toxicity for all eligible patients who received the planned RT with documented acute toxicity (CTCAEv.2) and RT-quality assurance parameters. The RT dose (70 Gy, 74 Gy or 78 Gy) and technique (3DCRT vs IRMT) were per institution choice, the randomization was stratified for institution. Statistical significance was set at 0.05. (ClinicalTrials.gov: NCT00021450) Results: Of 819 randomized patients, 28 were excluded from the analysis (3 with <60 Gy RT, 25 with missing information). Of the 791 analysed patients, 652 (82.4%) were treated with 3D-CRT, 139 with IMRT. In the 3DCRT group, 195 patients (29.9%) were treated with a total prescribed dose of 70 Gy; 376 (57.7%) with 74 Gy and 81 (12.4%) with 78 Gy. In the IMRT group, 28 (20.1%) were treated to a total dose of 74 Gy and 111 (79.9%) with 78 Gy. Overall, only 7 of 791 patients (0.9%) had grade 3 GI toxicity during RT: diarrhea (N = 6), rectal bleeding (N = 1) and proctitis (N = 1). Fifty patients (6.3%) had grade 3 GU toxicity: urinary frequency (N = 38, 4.6%), dysuria (N = 14, 1.7%), urinary retention (N = 11, 1.3%), urinary incontinence (N = 2) and hematuria (N = 1). No grade 4 toxicity was reported. Hormonal treatment did not influence the risk of side effects (p>0.05). The risk of grade _2 GI toxicity significantly correlated to D50%-rectum (p = 0.004) with a cut-of value of 44 Gy. The risk of grade _2 GU toxicity was moderately affected by Dmax-bladder (p = 0.051). Overall, only 14 patients (1.8%) had residual grade 3 toxicities one month after RT. Conclusion: 3D-CRT and IMRT up to 78 Gy is well tolerated. Dmaxbladder and D50%-rectum were related to the risk of grade_2 GU and GI toxicity, respectively. IMRT lowered D50% rectum and Dmax-bladder. An irradiated volume >400 cc for 3D-RT and a dose of 78 Gy, even for IMRT, negatively affected those parameters and increased the risk for toxicity.
Resumo:
Defects in FAM161A, a protein of unknown function localized at the cilium of retinal photoreceptor cells, cause retinitis pigmentosa, a form of hereditary blindness. By using different fragments of this protein as baits to screen cDNA libraries of human and bovine retinas, we defined a yeast two-hybrid-based FAM161A interactome, identifying 53 bona fide partners. In addition to statistically significant enrichment in ciliary proteins, as expected, this interactome revealed a substantial bias towards proteins from the Golgi apparatus, the centrosome and the microtubule network. Validation of interaction with key partners by co-immunoprecipitation and proximity ligation assay confirmed that FAM161A is a member of the recently recognized Golgi-centrosomal interactome, a network of proteins interconnecting Golgi maintenance, intracellular transport and centrosome organization. Notable FAM161A interactors included AKAP9, FIP3, GOLGA3, KIFC3, KLC2, PDE4DIP, NIN and TRIP11. Furthermore, analysis of FAM161A localization during the cell cycle revealed that this protein followed the centrosome during all stages of mitosis, likely reflecting a specific compartmentalization related to its role at the ciliary basal body during the G0 phase. Altogether, these findings suggest that FAM161A's activities are probably not limited to ciliary tasks but also extend to more general cellular functions, highlighting possible novel mechanisms for the molecular pathology of retinal disease.