34 resultados para learning in projects


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning and immunity are two adaptive traits with roles in central aspects of an organism's life: learning allows adjusting behaviours in changing environments, while immunity protects the body integrity against parasites and pathogens. While we know a lot about how these two traits interact in vertebrates, the interactions between learning and immunity remain poorly explored in insects. During my PhD, I studied three possible ways in which these two traits interact in the model system Drosophila melanogaster, a model organism in the study of learning and in the study of immunity. Learning can affect the behavioural defences against parasites and pathogens through the acquisition of new aversions for contaminated food for instance. This type of learning relies on the ability to associate a food-related cue with the visceral sickness following ingestion of contaminated food. Despite its potential implication in infection prevention, the existence of pathogen avoidance learning has been rarely explored in invertebrates. In a first part of my PhD, I tested whether D. melanogaster, which feed on food enriched in microorganisms, innately avoid the orally-acquired 'novel' virulent pathogen Pseudomonas entomophila, and whether it can learn to avoid it. Although flies did not innately avoid this pathogen, they decreased their preference for contaminated food over time, suggesting the existence of a form of learning based likely on infection-induced sickness. I further found that flies may be able to learn to avoid an odorant which was previously associated with the pathogen, but this requires confirmation with additional data. If this is confirmed, this would be the first time, to my knowledge, that pathogen avoidance learning is reported in an insect. The detrimental effect of infection on cognition and more specifically on learning ability is well documented in vertebrates and in social insects. While the underlying mechanisms are described in detail in vertebrates, experimental investigations are lacking in invertebrates. In a second part of my PhD, I tested the effect of an oral infection with natural pathogens on associative learning of D. melanogaster. By contrast with previous studies in insects, I found that flies orally infected with the virulent P. entomophila learned better the association of an odorant with mechanical shock than uninfected flies. The effect seems to be specific to a gut infection, and so far I have not been able to draw conclusions on the respective contributions of the pathogen's virulence and of the flies' immune activity in this effect. Interestingly, infected flies may display an increased sensitivity to physical pain. If the learning improvement observed in infected flies was due partially to the activity of the immune system, my results would suggest the existence of physiological connections between the immune system and the nervous system. The basis of these connections would then need to be addressed. Learning and immunity are linked at the physiological level in social insects. Physiological links between traits often result from the expression of genetic links between these traits. However, in social insects, there is no evidence that learning and immunity may be involved in an evolutionary trade-off. I previously reported a positive effect of infection on learning in D. melanogaster. This might suggest that a positive genetic link could exist between learning and immunity. We tested this hypothesis with two approaches: the diallel cross design with inbred lines, and the isofemale lines design. The two approaches provided consistent results: we found no additive genetic correlation between learning and resistance to infection with the diallel cross, and no genetic correlation in flies which are not yet adapted to laboratory conditions in isofemale lines. Consistently with the literature, the two studies suggested that the positive effect of infection on learning I observed might not be reflected by a positive evolutionary link between learning and immunity. Nevertheless, the existence of complex genetic relationships between the two traits cannot be excluded. - L'apprentissage et l'immunité sont deux caractères à valeur adaptative impliqués dans des aspects centraux de la vie d'un organisme : l'apprentissage permet d'ajuster les comportements pour faire face aux changements de l'environnement, tandis que l'immunité protège l'intégrité corporelle contre les attaques des parasites et des pathogènes. Alors que les interactions entre l'apprentissage et l'immunité sont bien documentées chez les vertébrés, ces interactions ont été très peu étudiées chez les insectes. Pendant ma thèse, je me suis intéressée à trois aspects des interactions possibles entre l'apprentissage et l'immunité chez la mouche du vinaigre Drosophila melanogaster, qui est un organisme modèle dans l'étude à la fois de l'apprentissage et de l'immunité. L'apprentissage peut affecter les défenses comportementales contre les parasites et les pathogènes par l'acquisition de nouvelles aversions pour la nourriture contaminée par exemple. Ce type d'apprentissage repose sur la capacité à associer une caractéristique de la nourriture avec la maladie qui suit l'ingestion de cette nourriture. Malgré les implications potentielles pour la prévention des infections, l'évitement appris des pathogènes a été rarement étudié chez les invertébrés. Dans une première partie de ma thèse, j'ai testé si les mouches, qui se nourrissent sur des milieux enrichis en micro-organismes, évitent de façon innée un 'nouveau' pathogène virulent Pseudomonas entomophila, et si elles ont la capacité d'apprendre à l'éviter. Bien que les mouches ne montrent pas d'évitement inné pour ce pathogène, elles diminuent leur préférence pour de la nourriture contaminée dans le temps, suggérant l'existence d'une forme d'apprentissage basée vraisemblablement sur la maladie générée par l'infection. J'ai ensuite observé que les mouches semblent être capables d'apprendre à éviter une odeur qui était au préalable associée avec ce pathogène, mais cela reste à confirmer par la collecte de données supplémentaires. Si cette observation est confirmée, cela sera la première fois, à ma connaissance, que l'évitement appris des pathogènes est décrit chez un insecte. L'effet détrimental des infections sur la cognition et plus particulièrement sur les capacités d'apprentissage est bien documenté chez les vertébrés et les insectes sociaux. Alors que les mécanismes sous-jacents sont détaillés chez les vertébrés, des études expérimentales font défaut chez les insectes. Dans une seconde partie de ma thèse, j'ai mesuré les effets d'une infection orale par des pathogènes naturels sur les capacités d'apprentissage associatif de la drosophile. Contrairement aux études précédentes chez les insectes, j'ai trouvé que les mouches infectées par le pathogène virulent P. entomophila apprennent mieux à associer une odeur avec des chocs mécaniques que des mouches non infectées. Cet effet semble spécifique à l'infection orale, et jusqu'à présent je n'ai pas pu conclure sur les contributions respectives de la virulence du pathogène et de l'activité immunitaire des mouches dans cet effet. De façon intéressante, les mouches infectées pourraient montrer une plus grande réactivité à la douleur physique. Si l'amélioration de l'apprentissage observée chez les mouches infectées était due en partie à l'activité du système immunitaire, mes résultats suggéreraient l'existence de connections physiologiques entre le système immunitaire et le système nerveux. Les mécanismes de ces connections seraient à explorer. L'apprentissage et l'immunité sont liés sur un plan physiologique chez les insectes sociaux. Les liens physiologiques entre les caractères résultent souvent de l'expression de liens entre ces caractères au niveau génétique. Cependant, chez les insectes sociaux, il n'y a pas de preuve que l'apprentissage et l'immunité soient liés par un compromis évolutif. J'ai précédemment rapporté un effet positif de l'infection sur l'apprentissage chez la drosophile. Cela pourrait suggérer qu'une relation génétique positive existerait entre l'apprentissage et l'immunité. Nous avons testé cette hypothèse par deux approches : le croisement diallèle avec des lignées consanguines, et les lignées isofemelles. Les deux approches ont fournies des résultats similaires : nous n'avons pas détecté de corrélation génétique additive entre l'apprentissage et la résistance à l'infection avec le croisement diallèle, et pas de corrélation génétique chez des mouches non adaptées aux conditions de laboratoire avec les lignées isofemelles. En ligne avec la littérature, ces deux études suggèrent que l'effet positif de l'infection sur l'apprentissage que j'ai précédemment observé ne refléterait pas un lien évolutif positif entre l'apprentissage et l'immunité. Néanmoins, l'existence de relations génétiques complexes n'est pas exclue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning ability can be substantially improved by artificial selection in animals ranging from Drosophila to rats. Thus these species have not used their evolutionary potential with respect to learning ability, despite intuitively expected and experimentally demonstrated adaptive advantages of learning. This suggests that learning is costly, but this notion has rarely been tested. Here we report correlated responses of life-history traits to selection for improved learning in Drosophila melanogaster. Replicate populations selected for improved learning lived on average 15% shorter than the corresponding unselected control populations. They also showed a minor reduction in fecundity late in life and possibly a minor increase in dry adult mass. Selection for improved learning had no effect on egg-to-adult viability, development rate, or desiccation resistance. Because shortened longevity was the strongest correlated response to selection for improved learning, we also measured learning ability in another set of replicate populations that had been selected for extended longevity. In a classical olfactory conditioning assay, these long-lived flies showed an almost 40% reduction in learning ability early in life. This effect disappeared with age. Our results suggest a symmetrical evolutionary trade-off between learning ability and longevity in Drosophila.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fragile X syndrome (FXS) is characterized by intellectual disability and autistic traits, and results from the silencing of the FMR1 gene coding for a protein implicated in the regulation of protein synthesis at synapses. The lack of functional Fragile X mental retardation protein has been proposed to result in an excessive signaling of synaptic metabotropic glutamate receptors, leading to alterations of synapse maturation and plasticity. It remains, however, unclear how mechanisms of activity-dependent spine dynamics are affected in Fmr knockout (Fmr1-KO) mice and whether they can be reversed. Here we used a repetitive imaging approach in hippocampal slice cultures to investigate properties of structural plasticity and their modulation by signaling pathways. We found that basal spine turnover was significantly reduced in Fmr1-KO mice, but markedly enhanced by activity. Additionally, activity-mediated spine stabilization was lost in Fmr1-KO mice. Application of the metabotropic glutamate receptor antagonist α-Methyl-4-carboxyphenylglycine (MCPG) enhanced basal turnover, improved spine stability, but failed to reinstate activity-mediated spine stabilization. In contrast, enhancing phosphoinositide-3 kinase (PI3K) signaling, a pathway implicated in various aspects of synaptic plasticity, reversed both basal turnover and activity-mediated spine stabilization. It also restored defective long-term potentiation mechanisms in slices and improved reversal learning in Fmr1-KO mice. These results suggest that modulation of PI3K signaling could contribute to improve the cognitive deficits associated with FXS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Individual learning (e.g., trial-and-error) and social learning (e.g., imitation) are alternative ways of acquiring and expressing the appropriate phenotype in an environment. The optimal choice between using individual learning and/or social learning may be dictated by the life-stage or age of an organism. Of special interest is a learning schedule in which social learning precedes individual learning, because such a schedule is apparently a necessary condition for cumulative culture. Assuming two obligatory learning stages per discrete generation, we obtain the evolutionarily stable learning schedules for the three situations where the environment is constant, fluctuates between generations, or fluctuates within generations. During each learning stage, we assume that an organism may target the optimal phenotype in the current environment by individual learning, and/or the mature phenotype of the previous generation by oblique social learning. In the absence of exogenous costs to learning, the evolutionarily stable learning schedules are predicted to be either pure social learning followed by pure individual learning ("bang-bang" control) or pure individual learning at both stages ("flat" control). Moreover, we find for each situation that the evolutionarily stable learning schedule is also the one that optimizes the learned phenotype at equilibrium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Helping behaviors can be innate, learned by copying others (cultural transmission) or individually learned de novo. These three possibilities are often entangled in debates on the evolution of helping in humans. Here we discuss their similarities and differences, and argue that evolutionary biologists underestimate the role of individual learning in the expression of helping behaviors in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report synthesizes the findings of 11 country reports on policy learning in labour market and social policies that were conducted as part of WP5 of the INSPIRES project, which is funded by the 7th Framework Program of the EU-Commission. Notably, this report puts forward objectives of policy learning, discusses tools, processes and institutions of policy learning and presents the impacts of various tools and structures of the policy learning infrastructure for the actual policy learning process. The report defines three objectives of policy learning: evaluation and assessment of policy effectiveness, vision building and planning, and consensus building. In the 11 countries under consideration, the tools and processes of the policy learning, infrastructure can be classified into three broad groups: public bodies, expert councils, and parties, interest groups and the private sector. Finally, we develop four recommendations for policy learning: Firstly, learning processes should keep the balance between centralisation and plurality. Secondly, learning processes should be kept stable beyond the usual political business cycles. Thirdly, policy learning tools and infrastructures should be sufficiently independent from political influence or bias. Fourth, Policy learning tools and infrastructures should balance out mere effectiveness, evaluation and vision building.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rats were treated postnatally (PND 5-16) with BSO (l-buthionine-(S,R)-sulfoximine) in an animal model of schizophrenia based on transient glutathione deficit. The BSO treated rats were impaired in patrolling a maze or a homing table when adult, yet demonstrated preserved escape learning, place discrimination and reversal in a water maze task [37]. In the present work, BSO rats' performance in the water maze was assessed in conditions controlling for the available visual cues. First, in a completely curtained environment with two salient controlled cues, BSO rats showed little accuracy compared to control rats. Secondly, pre-trained BSO rats were impaired in reaching the familiar spatial position when curtains partially occluded different portions of the room environment in successive sessions. The apparently preserved place learning in a classical water maze task thus appears to require the stability and the richness of visual landmarks from the surrounding environment. In other words, the accuracy of BSO rats in place and reversal learning is impaired in a minimal cue condition or when the visual panorama changes between trials. However, if the panorama remains rich and stable between trials, BSO rats are equally efficient in reaching a familiar position or in learning a new one. This suggests that the BSO accurate performance in the water maze does not satisfy all the criteria for a cognitive map based navigation on the integration of polymodal cues. It supports the general hypothesis of a binding deficit in BSO rats.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The capacity to learn to associate sensory perceptions with appropriate motor actions underlies the success of many animal species, from insects to humans. The evolutionary significance of learning has long been a subject of interest for evolutionary biologists who emphasize the bene¬fit yielded by learning under changing environmental conditions, where it is required to flexibly switch from one behavior to another. However, two unsolved questions are particularly impor¬tant for improving our knowledge of the evolutionary advantages provided by learning, and are addressed in the present work. First, because it is possible to learn the wrong behavior when a task is too complex, the learning rules and their underlying psychological characteristics that generate truly adaptive behavior must be identified with greater precision, and must be linked to the specific ecological problems faced by each species. A framework for predicting behavior from the definition of a learning rule is developed here. Learning rules capture cognitive features such as the tendency to explore, or the ability to infer rewards associated to unchosen actions. It is shown that these features interact in a non-intuitive way to generate adaptive behavior in social interactions where individuals affect each other's fitness. Such behavioral predictions are used in an evolutionary model to demonstrate that, surprisingly, simple trial-and-error learn¬ing is not always outcompeted by more computationally demanding inference-based learning, when population members interact in pairwise social interactions. A second question in the evolution of learning is its link with and relative advantage compared to other simpler forms of phenotypic plasticity. After providing a conceptual clarification on the distinction between genetically determined vs. learned responses to environmental stimuli, a new factor in the evo¬lution of learning is proposed: environmental complexity. A simple mathematical model shows that a measure of environmental complexity, the number of possible stimuli in one's environ¬ment, is critical for the evolution of learning. In conclusion, this work opens roads for modeling interactions between evolving species and their environment in order to predict how natural se¬lection shapes animals' cognitive abilities. - La capacité d'apprendre à associer des sensations perceptives à des actions motrices appropriées est sous-jacente au succès évolutif de nombreuses espèces, depuis les insectes jusqu'aux êtres hu¬mains. L'importance évolutive de l'apprentissage est depuis longtemps un sujet d'intérêt pour les biologistes de l'évolution, et ces derniers mettent l'accent sur le bénéfice de l'apprentissage lorsque les conditions environnementales sont changeantes, car dans ce cas il est nécessaire de passer de manière flexible d'un comportement à l'autre. Cependant, deux questions non résolues sont importantes afin d'améliorer notre savoir quant aux avantages évolutifs procurés par l'apprentissage. Premièrement, puisqu'il est possible d'apprendre un comportement incorrect quand une tâche est trop complexe, les règles d'apprentissage qui permettent d'atteindre un com¬portement réellement adaptatif doivent être identifiées avec une plus grande précision, et doivent être mises en relation avec les problèmes écologiques spécifiques rencontrés par chaque espèce. Un cadre théorique ayant pour but de prédire le comportement à partir de la définition d'une règle d'apprentissage est développé ici. Il est démontré que les caractéristiques cognitives, telles que la tendance à explorer ou la capacité d'inférer les récompenses liées à des actions non ex¬périmentées, interagissent de manière non-intuitive dans les interactions sociales pour produire des comportements adaptatifs. Ces prédictions comportementales sont utilisées dans un modèle évolutif afin de démontrer que, de manière surprenante, l'apprentissage simple par essai-et-erreur n'est pas toujours battu par l'apprentissage basé sur l'inférence qui est pourtant plus exigeant en puissance de calcul, lorsque les membres d'une population interagissent socialement par pair. Une deuxième question quant à l'évolution de l'apprentissage concerne son lien et son avantage relatif vis-à-vis d'autres formes plus simples de plasticité phénotypique. Après avoir clarifié la distinction entre réponses aux stimuli génétiquement déterminées ou apprises, un nouveau fac¬teur favorisant l'évolution de l'apprentissage est proposé : la complexité environnementale. Un modèle mathématique permet de montrer qu'une mesure de la complexité environnementale - le nombre de stimuli rencontrés dans l'environnement - a un rôle fondamental pour l'évolution de l'apprentissage. En conclusion, ce travail ouvre de nombreuses perspectives quant à la mo¬délisation des interactions entre les espèces en évolution et leur environnement, dans le but de comprendre comment la sélection naturelle façonne les capacités cognitives des animaux.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Young hooded rats were trained to escape onto a hidden platform after swimming in a pool of opaque water. Subjects 21, 28, 35, 42, and 64 days of age on the first training day were given 28 trials on 5 consecutive days. Half of the rats were required to localize the platform in relation to external room cues only ("place only" condition) and the other half were helped by the presence of a visible cue on the platform ("cue + place" condition). A deficiency in place navigation was observed in the 21- and 28-day groups; they showed slow escape and took circuitous routes more often than older rats. This deficiency was related to a poor spatial bias toward the training position when the subjects were allowed to swim for 30 s in the absence of the platform, at the end of the 28-trial training period (probe trial). The 35-day group showed adult-like learning ability in both training conditions, but failed to show searching behavior during the probe trial after having been trained in the presence of the proximal cue. Only rats older than 40 days showed typical adult behavior such as swimming directly toward the platform from any starting position and localized searching around the absent platform's position during the probe trial, no matter what the training conditions were. These results suggest that central nervous system structures responsible for place learning in the rat are functional from around 32 days of age, but fail to trigger searching behavior following cued training before the sixth week.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

RÉSUMÉ : Le traitement répété à la phencyclidine (PCP), un bloqueur du récepteur NMDA (NMDAR), reproduit chez les rongeurs une partie de la symptomatologie typique de la schizophrénie. Le blocage prolongé du NMDAR par la PCP mime une hypofunction du NMDAR, une des principales altérations supposées exister dans les cerveaux des patients schizophréniques. Le but de notre étude était d'examiner les conséquences neurochimiques, métaboliques et fonctionnelles du traitement répété à la phencyclidine in vivo, au niveau du cortex préfrontal (cpf), une région cérébrale qui joue un rôle dans les déficits cognitifs observés chez les patients schizophréniques. Pour répondre à cette question, les rats ou les souris ont reçu chaque jour une injection soit de PCP (5 mg/kg), soit de solution saline, pendant 7 ou 14 jours. Les animaux ont ensuite été sacrifiés au moins 24 heures après le dernier traitement. Des tranches aiguës du cpf ont été préparées rapidement, puis stimulées avec une concentration élevée de KCI, de manière à induire une libération de glutamate à partir des terminaisons synaptiques excitatrices. Les résultats montrent que les tranches du cpf des animaux traités à la PCP ont libéré une quantité de glutamate significativement inférieure par rapport à celles des animaux contrôle. Ce déficit de libération a persisté 72 heures après la fin du traitement, tandis qu'il n'était pas observé dans le cortex visuel primaire, une autre région corticale. En outre, le traitement avec des antipsychotiques, l'halopéridol ou l'olanzapine, a supprimé le déficit induit par la PCP. Le même déficit de libération a été remarqué sur des synaptosomes obtenus à partir du cpf des animaux traités à la phenryclidine. Cette observation indique que la PCP induit une modification plastique adaptative du mécanisme qui contrôle la libération du glutamate dans les terminaisons synaptiques. Nous avons découvert que cette modification implique la sous-régulation d'un NMDAR présynaptique, qui serait doué d'un rôle d'autorécepteur stimulateur de la libération du glutamate. Grâce à des tests comportementaux conduits en parallèle et réalisés pour évaluer la fonctionnalité du cpf, nous avons observé chez les souris traitées à la PCP une flexibilité comportementale réduite lors d'un test de discrimination de stimuli visuels/tactiles. Le déficit cognitif était encore présent 4 jours après la dernière administration de PCP. La technique de l'autoradiographie quantitative du [14C]2-deoxyglucose a permis d'associer ce déficit à une réduction de l'activité métabolique cérébrale pendant le déroulement du test, particulièrement au niveau du cpf. Dans l'ensemble, nos résultats suggèrent que le blocage prolongé du NMDAR lors de l'administration répétée de PCP produit un déficit de libération du glutamate au niveau des terminaisons synaptiques excitatrices du cpf. Un tel déficit pourrait être provoqué par la sousrégulation d'un NMDAR présynaptique, qui aurait une fonction de stimulateur de libération; la transmission excitatrice du cpf s'en trouverait dans ce cas réduite. Ce résultat est en ligne avec l'activité métabolique et fonctionnelle réduite du cpf et l'observation de déficits cognitifs induits lors de l'administration de la PCP. ABSTRACT : Sub-chronic treatment with phencyclidine (PCP), an NMDA receptor (NMDAR) channel blocker, reproduces in rodents part of the symptomatology associated to schizophrenia in humans. Prolonged pharmacological blockade of NMDAR with PCP mimics NMDAR hypofunction, one of the main alterations thought to take place in the brains of schizophrenics. Our study was aimed at investigating the neurochemical, metabolic and behavioral consequences of repeated PCP administration in vivo, focusing on the functioning of the prefrontal cortex (pfc), a brain region highly relevant for the cognitive deficits observed in schizophrenic patients. Rats or mice received a daily administration of either PCP (5 mg/kg) or saline for 7 or 14 days. At least 24 hours after the last treatment the animals were sacrificed. Acute slices of the pfc were quickly prepared and challenged with high KCl to induce synaptic glutamate release. Pfc slices from PCP-treated animals released significantly less glutamate than slices from salinetreated animals. The deficit persisted 72 hours after the end of the treatment, while it was not observed in another cortical region: the primary visual cortex. Interestingly, treatment with antipsychotic drugs, either haloperidol or olanzapine, reverted the glutamate release defect induced by PCP treatment. The same release defect was observed in synaptosomes prepared from the pfc of PCP-treated animals, indicating that PCP induces a plastic adaptive change in the mechanism controlling glutamate release in the glutamatergic terminals. We discovered that such change most likely involves the down-regulation of a newly identified, pre-synaptic NMDAR with stimulatory auto-receptor function on glutamate release. In parallel sets of behavioral experiments challenging pfc function, mice sub-chronically treated with PCP displayed reduced behavioral flexibility (reversal learning) in a visual/tactile-cued discrimination task. The cognitive deficit was still evident 4 days after the last PCP administration and was associated to reduced brain metabolic activity during the performance of the behavioral task, notably in the pfc, as determined by [14C]2-deoxyglucose quantitative autoradiography. Clverall, our findings suggest that prolonged NMDAR blockade by repeated PCP administration results in a defect of glutamate release from excitatory afferents in the pfc, possibly ascribed to down-regulation of apre-synaptic stimulatory NMDAR. Deficient excitatory neurotransmission in the pfc is consistent with the reduced metabolic and functional activation of this area and the observed PCP-induced cognitive deficits.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: Interprofessional collaborative practices are increasingly recognized as an effective way to deal with complex health problems. However, health sciences students continue to be trained in specialized programs and have little occasion for learning in interdisciplinary contexts. Program Development: The project's purpose was to develop content and an educational design for new prelicensure interfaculty courses on interprofessional collaboration in patient and family-centered care which embedded interprofessional education principles where participants learn with, from and about each other. Implementation: Intensive training was part of a 45-hour program, offered each semester, which was divided into three 15-hour courses given on weekends, to enhance accessibility. Evaluation: A total of 215 students completed questionnaires following the courses, to assess their satisfaction with the educational content. Pre/post measures assessed perception of skills acquisition and perceived benefits of interprofessional collaboration training. Results showed a significant increase from the students' point of view in the knowledge and benefits to be gained from interprofessional collaboration training.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We assessed decision-making capacity and emotional reactivity in 20 patients with multiple sclerosis (MS) and in 16 healthy subjects using the Gambling Task (GT), a model of real-life decision making, and the skin conductance response (SCR). Demographic, neurological, affective, and cognitive parameters were analyzed in MS patients for their effect on decision-making performance. MS patients persisted longer (slope, -3.6%) than the comparison group (slope, -6.4%) in making disadvantageous choices as the GT progressed (p < 0.001), suggesting significant slower learning in MS. Patients with higher Expanded Disability Status Scale scores (EDSS >2.0) showed a different pattern of impairment in the learning process compared with patients with lower functional impairment (EDSS </=2.0). This slower learning was associated with impaired emotional reactivity (anticipatory SCR 3.9 vs 6.1 microSiemens [microS] for patients vs the comparison group, p < 0.0001; post-choice SCR 3.9 vs 6.2 microS, p < 0.0001), but not with executive dysfunction. Impaired emotional dimensions of behavior (assessed using the Dysexecutive Questionnaire, p < 0.002) also correlated with slower learning. Given the considerable consequences that impaired decision making can have on daily life, we suggest that this factor may contribute to handicap and altered quality of life secondary to MS and is dependent on emotional experience. Ann Neurol 2004.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dans le domaine de la perception, l'apprentissage est contraint par la présence d'une architecture fonctionnelle constituée d'aires corticales distribuées et très spécialisées. Dans le domaine des troubles visuels d'origine cérébrale, l'apprentissage d'un patient hémi-anopsique ou agnosique sera limité par ses capacités perceptives résiduelles, mais un déficit de reconnaissance visuelle de nature apparemment perceptive, peut également être associé à une altération des représentations en mémoire à long terme. Des réseaux neuronaux distincts pour la reconnaissance - cortex temporal - et pour la localisation des sons - cortex pariétal - ont été décrits chez l'homme. L'étude de patients cérébro-lésés confirme le rôle des indices spatiaux dans un traitement auditif explicite du « where » et dans la discrimination implicite du « what ». Cette organisation, similaire à ce qui a été décrit dans la modalité visuelle, faciliterait les apprentissages perceptifs. Plus généralement, l'apprentissage implicite fonde une grande partie de nos connaissances sur le monde en nous rendant sensible, à notre insu, aux règles et régularités de notre environnement. Il serait impliqué dans le développement cognitif, la formation des réactions émotionnelles ou encore l'apprentissage par le jeune enfant de sa langue maternelle. Le caractère inconscient de cet apprentissage est confirmé par l'étude des temps de réaction sériels de patients amnésiques dans l'acquisition d'une grammaire artificielle. Son évaluation pourrait être déterminante dans la prise en charge ré-adaptative. [In the field of perception, learning is formed by a distributed functional architecture of very specialized cortical areas. For example, capacities of learning in patients with visual deficits - hemianopia or visual agnosia - from cerebral lesions are limited by perceptual abilities. Moreover a visual deficit in link with abnormal perception may be associated with an alteration of representations in long term (semantic) memory. Furthermore, perception and memory traces rely on parallel processing. This has been recently demonstrated for human audition. Activation studies in normal subjects and psychophysical investigations in patients with focal hemispheric lesions have shown that auditory information relevant to sound recognition and that relevant to sound localisation are processed in parallel, anatomically distinct cortical networks, often referred to as the "What" and "Where" processing streams. Parallel processing may appear counterintuitive from the point of view of a unified perception of the auditory world, but there are advantages, such as rapidity of processing within a single stream, its adaptability in perceptual learning or facility of multisensory interactions. More generally, implicit learning mechanisms are responsible for the non-conscious acquisition of a great part of our knowledge about the world, using our sensitivity to the rules and regularities structuring our environment. Implicit learning is involved in cognitive development, in the generation of emotional processing and in the acquisition of natural language. Preserved implicit learning abilities have been shown in amnesic patients with paradigms like serial reaction time and artificial grammar learning tasks, confirming that implicit learning mechanisms are not sustained by the cognitive processes and the brain structures that are damaged in amnesia. In a clinical perspective, the assessment of implicit learning abilities in amnesic patients could be critical for building adapted neuropsychological rehabilitation programs.]

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In order to understand the development of non-genetically encoded actions during an animal's lifespan, it is necessary to analyze the dynamics and evolution of learning rules producing behavior. Owing to the intrinsic stochastic and frequency-dependent nature of learning dynamics, these rules are often studied in evolutionary biology via agent-based computer simulations. In this paper, we show that stochastic approximation theory can help to qualitatively understand learning dynamics and formulate analytical models for the evolution of learning rules. We consider a population of individuals repeatedly interacting during their lifespan, and where the stage game faced by the individuals fluctuates according to an environmental stochastic process. Individuals adjust their behavioral actions according to learning rules belonging to the class of experience-weighted attraction learning mechanisms, which includes standard reinforcement and Bayesian learning as special cases. We use stochastic approximation theory in order to derive differential equations governing action play probabilities, which turn out to have qualitative features of mutator-selection equations. We then perform agent-based simulations to find the conditions where the deterministic approximation is closest to the original stochastic learning process for standard 2-action 2-player fluctuating games, where interaction between learning rules and preference reversal may occur. Finally, we analyze a simplified model for the evolution of learning in a producer-scrounger game, which shows that the exploration rate can interact in a non-intuitive way with other features of co-evolving learning rules. Overall, our analyses illustrate the usefulness of applying stochastic approximation theory in the study of animal learning.