36 resultados para learning by projects


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Auditory spatial representations are likely encoded at a population level within human auditory cortices. We investigated learning-induced plasticity of spatial discrimination in healthy subjects using auditory-evoked potentials (AEPs) and electrical neuroimaging analyses. Stimuli were 100 ms white-noise bursts lateralized with varying interaural time differences. In three experiments, plasticity was induced with 40 min of discrimination training. During training, accuracy significantly improved from near-chance levels to approximately 75%. Before and after training, AEPs were recorded to stimuli presented passively with a more medial sound lateralization outnumbering a more lateral one (7:1). In experiment 1, the same lateralizations were used for training and AEP sessions. Significant AEP modulations to the different lateralizations were evident only after training, indicative of a learning-induced mismatch negativity (MMN). More precisely, this MMN at 195-250 ms after stimulus onset followed from differences in the AEP topography to each stimulus position, indicative of changes in the underlying brain network. In experiment 2, mirror-symmetric locations were used for training and AEP sessions; no training-related AEP modulations or MMN were observed. In experiment 3, the discrimination of trained plus equidistant untrained separations was tested psychophysically before and 0, 6, 24, and 48 h after training. Learning-induced plasticity lasted <6 h, did not generalize to untrained lateralizations, and was not the simple result of strengthening the representation of the trained lateralizations. Thus, learning-induced plasticity of auditory spatial discrimination relies on spatial comparisons, rather than a spatial anchor or a general comparator. Furthermore, cortical auditory representations of space are dynamic and subject to rapid reorganization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glucose has been considered the major, if not the exclusive, energy substrate for the brain. But under certain physiological and pathological conditions other substrates, namely monocarboxylates (lactate, pyruvate and ketone bodies), can contribute significantly to satisfy brain energy demands. These monocarboxylates need to be transported across the blood-brain barrier or out of astrocytes into the extracellular space and taken up into neurons. It has been shown that monocarboxylates are transported by a family of proton-linked transporters called monocarboxylate transporters (MCTs). In the central nervous system, MCT2 is the predominant neuronal isoform and little is known about the regulation of its expression. Noradrenaline (NA), insulin and IGF-1 were previously shown to enhance the expression of MCT2 in cultured cortical neurons via a translational mechanism. Here we demonstrate that the well known brain neurotrophic factor BDNF enhances MCT2 protein expression in cultured cortical neurons and in synaptoneurosome preparations in a time- and concentrationdependent manner without affecting MCT2 mRNA levels. We observed that BDNF induced MCT2 expression by activation of MAPK as well as PI3K/Akt/mTOR signaling pathways. Furthermore, we investigated the possible post-transcriptional regulation of MCT2 expression by a neuronal miRNA. Then, we demonstrated that BDNF enhanced MCT2 expression in the hippocampus in vivo, in parallel with some post-synaptic proteins such as PSD95 and AMPA receptor GluR2/3 subunits, and two immediate early genes Arc and Zif268 known to be expressed in conditions related to synaptic plasticity. In the last part, we demonstrated in vivo that a downregulation of hippocampal MCT2 via silencing with an appropriate lentiviral vector in mice caused an impairment of working memory without reference memory deficit. In conclusion, these results suggest that regulation of neuronal monocarboxylate transporter MCT2 expression could be a key event in the context of synaptic plasticity, allowing an adequate energy substrate supply in situations of altered synaptic efficacy. - Le glucose représente le substrat énergétique majeur pour le cerveau. Cependant, dans certaines conditions physiologiques ou pathologiques, le cerveau a la capacité d'utiliser des substrats énergéiques appartenant à la classe des monocarboxylates (lactate, pyruvate et corps cétoniques) afin de satisfaire ses besoins énergétiques. Ces monocarboxylates doivent être transportés à travers la barrière hématoencéphalique mais aussi hors des astrocytes vers l'espace extracellulaire puis re-captés par les neurones. Leur transport est assuré par une famillle de transporteurs aux monocarboxylates (MCTs). Dans le système nerveux central, les neurones expriment principalement l'isoforme MCT2 mais peu d'informations sont disponibles concernant la régulation de son expression. Il a été montré que la noradrénaline, l'insuline et l'IGF-1 induisent l'expression de MCT2 dans des cultures de neurones corticaux par un mécanisme traductionnel. Dans cette étude nous démontrons dans un premier temps que le facteur neurotrophique BDNF augmente l'expression de MCT2 à la fois dans des cultures de neurones corticaux et dans les préparations synaptoneurosomales selon un décours temporel et une gamme de concentrations propre. Aucun changement n'a été observé concernant les niveaux d'ARNm de MCT2. Nous avons observé que le BDNF induisait l'expression de MCT2 par l'activation simultanée des voies de signalisation MAPK et PI3K/Akt/mTOR. De plus, nous nous sommes intéressés à une potentielle régulation par les micro-ARNs de la synthèse de MCT2. Ensuite, nous avons démontré que le BDNF induit aussi l'expression de MCT2 dans l'hippocampe de la souris en parallèle avec d'autres protéines post-synaptiques telles que PSD95 et GluR2/3 et avec deux « immediate early genes » tels que Arc et Zif268 connus pour être exprimés dans des conditions de plasticité synaptique. Dans un dernier temps, nous avons démontré qu'une diminution d'expression de MCT2 induite par le biais d'un siRNA exprimé via un vecteur lentiviral dans l'hippocampe de souris générait des déficits de mémoire de travail sans affecter la mémoire de référence. En conclusion, ces résultats nous suggèrent que le transporteur aux monocarboxylates neuronal MCT2 serait essentiel pour l'apport énergétique du lactate pour les neurones dans des conditions de haute activité neuronale comme c'est le cas pendant les processus de plasticité synaptique.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It has been convincingly argued that computer simulation modeling differs from traditional science. If we understand simulation modeling as a new way of doing science, the manner in which scientists learn about the world through models must also be considered differently. This article examines how researchers learn about environmental processes through computer simulation modeling. Suggesting a conceptual framework anchored in a performative philosophical approach, we examine two modeling projects undertaken by research teams in England, both aiming to inform flood risk management. One of the modeling teams operated in the research wing of a consultancy firm, the other were university scientists taking part in an interdisciplinary project experimenting with public engagement. We found that in the first context the use of standardized software was critical to the process of improvisation, the obstacles emerging in the process concerned data and were resolved through exploiting affordances for generating, organizing, and combining scientific information in new ways. In the second context, an environmental competency group, obstacles were related to the computer program and affordances emerged in the combination of experience-based knowledge with the scientists' skill enabling a reconfiguration of the mathematical structure of the model, allowing the group to learn about local flooding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The synthesis of published research in systematic reviews is essential when providing evidence to inform clinical and health policy decision-making. However, the validity of systematic reviews is threatened if journal publications represent a biased selection of all studies that have been conducted (dissemination bias). To investigate the extent of dissemination bias we conducted a systematic review that determined the proportion of studies published as peer-reviewed journal articles and investigated factors associated with full publication in cohorts of studies (i) approved by research ethics committees (RECs) or (ii) included in trial registries. METHODS AND FINDINGS: Four bibliographic databases were searched for methodological research projects (MRPs) without limitations for publication year, language or study location. The searches were supplemented by handsearching the references of included MRPs. We estimated the proportion of studies published using prediction intervals (PI) and a random effects meta-analysis. Pooled odds ratios (OR) were used to express associations between study characteristics and journal publication. Seventeen MRPs (23 publications) evaluated cohorts of studies approved by RECs; the proportion of published studies had a PI between 22% and 72% and the weighted pooled proportion when combining estimates would be 46.2% (95% CI 40.2%-52.4%, I2 = 94.4%). Twenty-two MRPs (22 publications) evaluated cohorts of studies included in trial registries; the PI of the proportion published ranged from 13% to 90% and the weighted pooled proportion would be 54.2% (95% CI 42.0%-65.9%, I2 = 98.9%). REC-approved studies with statistically significant results (compared with those without statistically significant results) were more likely to be published (pooled OR 2.8; 95% CI 2.2-3.5). Phase-III trials were also more likely to be published than phase II trials (pooled OR 2.0; 95% CI 1.6-2.5). The probability of publication within two years after study completion ranged from 7% to 30%. CONCLUSIONS: A substantial part of the studies approved by RECs or included in trial registries remains unpublished. Due to the large heterogeneity a prediction of the publication probability for a future study is very uncertain. Non-publication of research is not a random process, e.g., it is associated with the direction of study findings. Our findings suggest that the dissemination of research findings is biased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of ecological constraints in promoting sociality is currently much debated. Using a direct-fitness approach, we show this role to depend on the kin-discrimination mechanisms underlying social interactions. Altruism cannot evolve under spatially based discrimination, unless ecological constraints prevent complete dispersal. Increasing constraints enhances both the proportion of philopatric (and thereby altruistic) individuals and the level of altruistic investments conceded in pairwise interactions. Familiarity-based discrimination, by contrast, allows philopatry and altruism to evolve at significant levels even in the absence of ecological constraints. Increasing constraints further enhances the proportion of philopatric (and thereby altruistic) individuals but not the level of altruism conceded. Ecological constraints are thus more likely to affect social evolution in species in which restricted cognitive abilities, large group size, and/or limited period of associative learning force investments to be made on the basis of spatial cues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to assess the influence of local environmental olfactory cues on place learning in rats. We developed a new experimental design allowing the comparison of the use of local olfactory and visual cues in spatial and discrimination learning. We compared the effect of both types of cues on the discrimination of a single food source in an open-field arena. The goal was either in a fixed or in a variable location, and could be indicated by local olfactory and/or visual cues. The local cues enhanced the discrimination of the goal dish, whether it was in a fixed or in a variable location. However, we did not observe any overshadowing of the spatial information by the local olfactory or visual cue. Rats relied primarily on distant visuospatial information to locate the goal, neglecting local information when it was in conflict with the spatial information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knockout mice lacking the alpha-1b adrenergic receptor were tested in behavioral experiments. Reaction to novelty was first assessed in a simple test in which the time taken by the knockout mice and their littermate controls to enter a second compartment was compared. Then the mice were tested in an open field to which unknown objects were subsequently added. Special novelty was introduced by moving one of the familiar objects to another location in the open field. Spatial behavior and memory were further studied in a homing board test, and in the water maze. The alpha-1b knockout mice showed an enhanced reactivity to new situations. They were faster to enter the new environment, covered longer paths in the open field, and spent more time exploring the new objects. They reacted like controls to modification inducing spatial novelty. In the homing board test, both the knockout mice and the control mice seemed to use a combination of distant visual and proximal olfactory cues, showing place preference only if the two types of cues were redundant. In the water maze the alpha-1b knockout mice were unable to learn the task, which was confirmed in a probe trial without platform. They were perfectly able, however, to escape in a visible platform procedure. These results confirm previous findings showing that the noradrenergic pathway is important for the modulation of behaviors such as reaction to novelty and exploration, and suggest that this is mediated, at least partly, through the alpha-1b adrenergic receptors. The lack of alpha-1b adrenergic receptors in spatial orientation does not seem important in cue-rich tasks but may interfere with orientation in situations providing distant cues only.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is the third edition of the compendium. It documents the status of important projects on nanomaterial toxicity and exposure monitoring, integrated risk management, research infrstructure and coordination and support activities. The compendium is not intended to be a guidance document for human health and environmental safety management of nanotechnologies, as such guidance documents already exist and are widely available. Neither is the compendium intended to be a medium for the publication of scientific papers and research results, as this task is covered by scientific conferences and the reviewed press. The compendium aims to bring researchers closer together and show them the potential for synergy in their work. It is a means to establish links and communication between them during the actual research phase and well before the publication of their results. It thus focuses on the communication of projects' strategic aims, extensively covers specific work objectives and the methods used in research, and documents human capacities and available laboratory infrastructure. As such, the compendium supports collaboration on common goals and the joint elaboration of future plans, whilst compromising neither the potential for scientific publication, nor intellectual property rights. [Auteurs]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Defining an efficient training set is one of the most delicate phases for the success of remote sensing image classification routines. The complexity of the problem, the limited temporal and financial resources, as well as the high intraclass variance can make an algorithm fail if it is trained with a suboptimal dataset. Active learning aims at building efficient training sets by iteratively improving the model performance through sampling. A user-defined heuristic ranks the unlabeled pixels according to a function of the uncertainty of their class membership and then the user is asked to provide labels for the most uncertain pixels. This paper reviews and tests the main families of active learning algorithms: committee, large margin, and posterior probability-based. For each of them, the most recent advances in the remote sensing community are discussed and some heuristics are detailed and tested. Several challenging remote sensing scenarios are considered, including very high spatial resolution and hyperspectral image classification. Finally, guidelines for choosing the good architecture are provided for new and/or unexperienced user.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Learning Objectives: 1. To provide an overview of the different types of internal hernia (IH) occurring after laparoscopic Roux‑en‑Y gastric bypass (LRYGBP) for morbid obesity. 2. To describe correspondent MDCT features in relation with the underlying anatomical landmarks in order to differentiate their localisation and to direct the surgeon during following laparoscopic closure of mesenteric defects. Background: LRYGBP for morbid obesity is associated with less perioperative complications, shorter hospital stay and a more rapid recovery compared with the open surgical procedure. However, a relatively high incidence of IH is seen that may be due to the laparoscopic approach, but also caused by rapid weight loss with consecutive loosening of the mesenteric sutures. Procedure Details: After briefly reviewing the surgical procedure of LRYGBP (ante‑ versus retrocolic), we describe the exact anatomical landmarks of the different types of IH occurring at any time after operation: They are caused by surgical defects at the level of the transverse colon mesentery, at the Petersen's space, which represents an opening between the mesocolon and jejunal mesentery, or at the entero‑enterostomy site. Typical MDCT features of each IH type in axial and coronal planes as well as targeted vascular reconstructions are demonstrated. Conclusion: Exact knowledge about underlying pathophysiology and anatomical landmarks is essential for distinguishing the different types of IH occurring after LRYGBP on MDCT, since radiological features are difficult to recognize and may even overlap. The radiologist should be aware of the potential anatomic sites to ensure subsequent straightforward laparoscopic exploration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capacity to learn to associate sensory perceptions with appropriate motor actions underlies the success of many animal species, from insects to humans. The evolutionary significance of learning has long been a subject of interest for evolutionary biologists who emphasize the bene¬fit yielded by learning under changing environmental conditions, where it is required to flexibly switch from one behavior to another. However, two unsolved questions are particularly impor¬tant for improving our knowledge of the evolutionary advantages provided by learning, and are addressed in the present work. First, because it is possible to learn the wrong behavior when a task is too complex, the learning rules and their underlying psychological characteristics that generate truly adaptive behavior must be identified with greater precision, and must be linked to the specific ecological problems faced by each species. A framework for predicting behavior from the definition of a learning rule is developed here. Learning rules capture cognitive features such as the tendency to explore, or the ability to infer rewards associated to unchosen actions. It is shown that these features interact in a non-intuitive way to generate adaptive behavior in social interactions where individuals affect each other's fitness. Such behavioral predictions are used in an evolutionary model to demonstrate that, surprisingly, simple trial-and-error learn¬ing is not always outcompeted by more computationally demanding inference-based learning, when population members interact in pairwise social interactions. A second question in the evolution of learning is its link with and relative advantage compared to other simpler forms of phenotypic plasticity. After providing a conceptual clarification on the distinction between genetically determined vs. learned responses to environmental stimuli, a new factor in the evo¬lution of learning is proposed: environmental complexity. A simple mathematical model shows that a measure of environmental complexity, the number of possible stimuli in one's environ¬ment, is critical for the evolution of learning. In conclusion, this work opens roads for modeling interactions between evolving species and their environment in order to predict how natural se¬lection shapes animals' cognitive abilities. - La capacité d'apprendre à associer des sensations perceptives à des actions motrices appropriées est sous-jacente au succès évolutif de nombreuses espèces, depuis les insectes jusqu'aux êtres hu¬mains. L'importance évolutive de l'apprentissage est depuis longtemps un sujet d'intérêt pour les biologistes de l'évolution, et ces derniers mettent l'accent sur le bénéfice de l'apprentissage lorsque les conditions environnementales sont changeantes, car dans ce cas il est nécessaire de passer de manière flexible d'un comportement à l'autre. Cependant, deux questions non résolues sont importantes afin d'améliorer notre savoir quant aux avantages évolutifs procurés par l'apprentissage. Premièrement, puisqu'il est possible d'apprendre un comportement incorrect quand une tâche est trop complexe, les règles d'apprentissage qui permettent d'atteindre un com¬portement réellement adaptatif doivent être identifiées avec une plus grande précision, et doivent être mises en relation avec les problèmes écologiques spécifiques rencontrés par chaque espèce. Un cadre théorique ayant pour but de prédire le comportement à partir de la définition d'une règle d'apprentissage est développé ici. Il est démontré que les caractéristiques cognitives, telles que la tendance à explorer ou la capacité d'inférer les récompenses liées à des actions non ex¬périmentées, interagissent de manière non-intuitive dans les interactions sociales pour produire des comportements adaptatifs. Ces prédictions comportementales sont utilisées dans un modèle évolutif afin de démontrer que, de manière surprenante, l'apprentissage simple par essai-et-erreur n'est pas toujours battu par l'apprentissage basé sur l'inférence qui est pourtant plus exigeant en puissance de calcul, lorsque les membres d'une population interagissent socialement par pair. Une deuxième question quant à l'évolution de l'apprentissage concerne son lien et son avantage relatif vis-à-vis d'autres formes plus simples de plasticité phénotypique. Après avoir clarifié la distinction entre réponses aux stimuli génétiquement déterminées ou apprises, un nouveau fac¬teur favorisant l'évolution de l'apprentissage est proposé : la complexité environnementale. Un modèle mathématique permet de montrer qu'une mesure de la complexité environnementale - le nombre de stimuli rencontrés dans l'environnement - a un rôle fondamental pour l'évolution de l'apprentissage. En conclusion, ce travail ouvre de nombreuses perspectives quant à la mo¬délisation des interactions entre les espèces en évolution et leur environnement, dans le but de comprendre comment la sélection naturelle façonne les capacités cognitives des animaux.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecologically and evolutionarily oriented research on learning has traditionally been carried out on vertebrates and bees. While less sophisticated than those animals, fruit flies (Drosophila) are capable of several forms of learning, and have an advantage of a short generation time, which makes them an ideal system for experimental evolution studies. This review summarizes the insights into evolutionary questions about learning gained in the last decade from evolutionary experiments on Drosophila. These experiments demonstrate that Drosophila have the genetic potential to evolve substantially improved learning performance in ecologically relevant learning tasks. In at least one set of selected populations the improved learning generalized to another task than that used to impose selection, involving a different behavior, different stimuli, and a different sensory channel for the aversive reinforcement. This improvement in learning ability was associated with reduction in other fitness-related traits, such as larval competitive ability and lifespan, pointing out to evolutionary trade-offs of improved learning. These trade-offs were confirmed by other evolutionary experiments where reduction in learning performance was observed as a correlated response to selection for tolerance to larval nutritional stress or for delayed aging. Such trade-offs could be one reason why fruit flies have not fully used up their evolutionary potential for learning ability. Finally, another evolutionary experiment with Drosophila provided the first direct evidence for the long-standing ideas that learning can under some circumstances accelerate and in other slow down genetically-based evolutionary change. These results demonstrate the usefulness of fruit flies as a model system to address evolutionary questions about learning.