55 resultados para insect digestion
Resumo:
Pseudomonas protegens is a biocontrol rhizobacterium with a plant-beneficial and an insect pathogenic lifestyle, but it is not understood how the organism switches between the two states. Here, we focus on understanding the function and possible evolution of a molecular sensor that enables P. protegens to detect the insect environment and produce a potent insecticidal toxin specifically during insect infection but not on roots. By using quantitative single cell microscopy and mutant analysis, we provide evidence that the sensor histidine kinase FitF is a key regulator of insecticidal toxin production. Our experimental data and bioinformatic analyses indicate that FitF shares a sensing domain with DctB, a histidine kinase regulating carbon uptake in Proteobacteria. This suggested that FitF has acquired its specificity through domain shuffling from a common ancestor. We constructed a chimeric DctB-FitF protein and showed that it is indeed functional in regulating toxin expression in P. protegens. The shuffling event and subsequent adaptive modifications of the recruited sensor domain were critical for the microorganism to express its potent insect toxin in the observed host-specific manner. Inhibition of the FitF sensor during root colonization could explain the mechanism by which P. protegens differentiates between the plant and insect host. Our study establishes FitF of P. protegens as a prime model for molecular evolution of sensor proteins and bacterial pathogenicity.
Resumo:
ABSTRACT: INTRODUCTION: Primitively eusocial halictid bees are excellent systems to study the origin of eusociality, because all individuals have retained the ancestral ability to breed independently. In the sweat bee Halictus scabiosae, foundresses overwinter, establish nests and rear a first brood by mass-provisioning each offspring with pollen and nectar. The mothers may thus manipulate the phenotype of their offspring by restricting their food provisions. The first brood females generally help their mother to rear a second brood of males and gynes that become foundresses. However, the first brood females may also reproduce in their maternal or in other nests, or possibly enter early diapause. Here, we examined if the behavioural specialization of the first and second brood females was associated with between-brood differences in body size, energetic reserves and pollen provisions. RESULTS: The patterns of variation in adult body size, weight, fat content and food provisioned to the first and second brood indicate that H. scabiosae has dimorphic females. The first-brood females were significantly smaller, lighter and had lower fat reserves than the second-brood females and foundresses. The first-brood females were also less variable in size and fat content, and developed on homogeneously smaller pollen provisions. Foundresses were larger than gynes of the previous year, suggesting that small females were less likely to survive the winter. CONCLUSIONS: The marked size dimorphism between females produced in the first and second brood and the consistently smaller pollen provisions provided to the first brood suggest that the first brood females are channelled into a helper role during their pre-imaginal development. As a large body size is needed for successful hibernation, the mother may promote helping in her first brood offspring by restricting their food provisions. This pattern supports the hypothesis that parental manipulation may contribute to promote worker behaviour in primitively eusocial halictids.
Resumo:
Caste differentiation and division of labor are the hallmarks of social insect colonies [1, 2]. The current dogma for female caste differentiation is that female eggs are totipotent, with morphological and physiological differences between queens and workers stemming from a developmental switch during the larval stage controlled by nutritional and other environmental factors (e.g., [3-8]). In this study, we tested whether maternal effects influence caste differentiation in Pogonomyrmex harvester ants. By conducting crossfostering experiments we identified two key factors in the process of caste determination. New queens were produced only from eggs laid by queens exposed to cold. Moreover, there was a strong age effect, with development into queens occurring only in eggs laid by queens that were at least two years old. Biochemical analyses further revealed that the level of ecdysteroids was significantly lower in eggs developing into queens than workers. By contrast, we found no significant effect of colony size or worker exposure to cold, suggesting that the trigger for caste differentiation may be independent of the quantity and quality of resources provided to larvae. Altogether these data demonstrate that the developmental fate of female brood is strongly influenced by maternal effects in ants of the genus Pogonomyrmex.
Resumo:
A recombinant baculovirus encoding a single-chain murine major histocompatibility complex class I molecule in which the first three domains of H-2Kd are fused to beta 2-microglobulin (beta 2-m) via a 15-amino acid linker has been isolated and used to infect lepidopteran cells. A soluble, 391-amino acid single-chain H-2Kd (SC-Kd) molecule of 48 kDa was synthesized and glycosylated in insect cells and could be purified in the absence of detergents by affinity chromatography using the anti-H-2Kd monoclonal antibody SF1.1.1.1. We tested the ability of SC-Kd to bind antigenic peptides using a direct binding assay based on photoaffinity labeling. The photoreactive derivative was prepared from the H-2Kd-restricted Plasmodium berghei circumsporozoite protein (P.b. CS) peptide 253-260 (YIPSAEKI), a probe that we had previously shown to be unable to bind to the H-2Kd heavy chain in infected cells in the absence of co-expressed beta 2-microglobulin. SC-Kd expressed in insect cells did not require additional mouse beta 2-m to bind the photoprobe, indicating that the covalently attached beta 2-m could substitute for the free molecule. Similarly, binding of the P.b. CS photoaffinity probe to the purified SC-Kd molecule was unaffected by the addition of exogenous beta 2-m. This is in contrast to H-2KdQ10, a soluble H-2Kd molecule in which beta 2-m is noncovalently bound to the soluble heavy chain, whose ability to bind the photoaffinity probe is greatly enhanced in the presence of an excess of exogenous beta 2-m. The binding of the probe to SC-Kd was allele-specific, since labeling was selectively inhibited only by antigenic peptides known to be presented by the H-2Kd molecule.
Resumo:
The root-colonizing Pseudomonas fluorescens strain CHA0 is a biocontrol agent of soil-borne plant diseases caused by fungal and oomycete pathogens. Remarkably, this plant-beneficial pseudomonad is also endowed with potent insecticidal activity that depends on the production of a large protein toxin termed Fit (for P. fluorescens insecticidal toxin). In our present work, the genomic locus encoding the P. fluorescens insect toxin is subjected to a detailed molecular analysis. The Fit toxin gene fitD is flanked upstream by the fitABC genes and downstream by the fitE gene that encode the ABC transporter, membrane fusion, and outer membrane efflux components of a type I protein secretion system predicted to function in toxin export. The fitF, fitG, and fitH genes located downstream of fitE code for regulatory proteins having domain structures typical of signal transduction histidine kinases, LysR-type transcriptional regulators, and response regulators, respectively. The role of these insect toxin locus-associated control elements is being investigated with mutants defective for the regulatory genes and with GFP-based reporter fusions to putative promoter regions upstream of the transporter genes fitA and fitE, the toxin gene fitD, and the regulatory genes fitF and fitH. Our preliminary findings suggest that the three regulators interact with known global regulators of biocontrol factor expression to control Fit toxin expression and secretion.
Resumo:
Recent evidence for genetic effects on royal and worker caste differentiation from diverse social insect taxa has put an end to the view that these phenotypes stem solely from a developmental switch controlled by environmental factors. Instead, the relative influences of genotypic and environmental effects on caste vary among species, ranging from largely environmentally controlled phenotypes to almost purely genetic systems. Disentangling the selective forces that generate variation for caste predisposition will require characterizing the genetic mechanisms underlying this variation, and identifying particular life-history strategies and kin structures associated with strong genetic effects on caste.
Resumo:
To date very few studies have addressed the effects of inbreeding in social Hymenoptera, perhaps because the costs of inbreeding are generally considered marginal owing to male haploidy whereby recessive deleterious alleles are strongly exposed to selection in males. Here, we present one of the first studies on the effects of queen and worker homozygosity on colony performance. In a wild population of the ant Formica exsecta, the relative investment of single-queen colonies in sexual production decreased with increased worker homozygosity. This may either stem from increased homozygosity decreasing the likelihood of diploid brood to develop into queens or a lower efficiency of more homozygous workers at feeding larvae and thus a lower proportion of the female brood developing into queens. There was also a significant negative association between colony age and the level of queen but not worker homozygosity. This association may stem from inbreeding affecting queen lifespan and/or their fecundity, and thus colony survival. However, there was no association between queen homozygosity and colony size, suggesting that inbreeding affects colony survival as a result of inbred queens having a shorter lifespan rather than a lower fecundity. Finally, there was no significant association between either worker or queen homozygosity and the probability of successful colony founding, colony size and colony productivity, the three other traits studied. Overall, these results indicate that inbreeding depression may have important effects on colony fitness by affecting both the parental (queen) and offspring (worker)generations cohabiting within an ant colony.
Resumo:
The application of plant-beneficial pseudomonads provides a promising alternative to chemical pest management in agriculture. The fact that Pseudomonas fluorescens CHA0 and Pf-5, both well-known biocontrol agents of fungal root diseases, exhibit also potent insecticidal activity is of particular interest, as these plant-beneficial bacteria naturally colonize the rhizosphere of important crop plants. Insecticidal activity in these strains depends on a novel locus encoding the production of a protein toxin termed Fit (for P. fluorescens insecticidal toxin). To gain a better understanding of the ecological relevance of the Pseudomonas anti-insect activity, we have begun to investigate the occurrence and molecular diversity of the Fit toxin genes among root-associated pseudomonads. To this end, we have screened a large world-wide collection of fluorescent Pseudomonas sp. isolated from the roots of different plant species using molecular fingerprinting techniques. The strains are already well characterized for exoproduct patterns and disease-suppressive ability and are currently being tested for insecticidal activity in a greater wax moth larvae assay system.
Resumo:
Insect gustatory and odorant receptors (GRs and ORs) form a superfamily of novel transmembrane proteins, which are expressed in chemosensory neurons that detect environmental stimuli. Here we identify homologues of GRs (Gustatory receptor-like (Grl) genes) in genomes across Protostomia, Deuterostomia and non-Bilateria. Surprisingly, two Grls in the cnidarian Nematostella vectensis, NvecGrl1 and NvecGrl2, are expressed early in development, in the blastula and gastrula, but not at later stages when a putative chemosensory organ forms. NvecGrl1 transcripts are detected around the aboral pole, considered the equivalent to the head-forming region of Bilateria. Morpholino-mediated knockdown of NvecGrl1 causes developmental patterning defects of this region, leading to animals lacking the apical sensory organ. A deuterostome Grl from the sea urchin Strongylocentrotus purpuratus displays similar patterns of developmental expression. These results reveal an early evolutionary origin of the insect chemosensory receptor family and raise the possibility that their ancestral role was in embryonic development.
Resumo:
Afin de pouvoir se défendre contre les insectes nuisibles, les plantes ont développé plusieurs stratégies leur permettant de maximiser leurs chances de survie et de reproduction. Parmi elles, les plantes sont souvent pourvues de barrières physiques telles que les poils urticants, les épines et la cuticule. En plus, les plantes sont capables de produire des protéines anti-digestives et des métabolites secondaires insecticides tels que la nicotine, les tannins ou les glucosinolates (GS). La mise en place de ces barrières physiques et chimiques comporte un coût énergétique au détriment de la croissance et de la reproduction. Par conséquent, en absence d'insectes, la plante investit la majeure partie de son énergie dans le développement et la croissance. A l'inverse, une blessure causée par un insecte provoquera une croissance ralentie, une augmentation de la densité de poils urticants ainsi que la synthèse de défenses chimiques. Au niveau moléculaire, cette défense inductible est régulée par l'hormone végétale acide jamsonique (AJ). En réponse à l'attaque d'un insecte, la plante produit cette hormone en grande quantité, ce qui se traduira par une forte expression de gènes de défense. Pendant ma thèse, j'ai essayé de découvrir quels étaient les facteurs de transcription (FT) responsables de l'expression des gènes de défense dans Arabidopsis thaliana. J'ai ainsi pu démontrer que des plantes mutées dans les FTs comme MYC2, MYC3, MYC4, ZAT10, ZAT12, AZF2, WRKY18, WRKY40, WRKY6, ANAC019, ANAC55, ERF13 et RRTF1 deviennent plus sensibles aux insects de l'espèce Spodoptera littoralis. Par la suite, j'ai également pu montrer que MYC2, MYC3 et MYC4 sont probablement la cible principale de la voie de signalisation du AJ et qu'ils sont nécessaires pour l'expression de la majorité des gènes de défense dont la plupart sont essentiels à la biosynthèse des GS. Une plante mutée simultanément dans ces trois protéines est par conséquent incapable de synthétiser des GS et devient hypersensible aux insectes. J'ai également pu démontrer que les GS sont uniquement efficaces contre les insectes généralistes tels S. littoralis et Heliothis virescens alors que les insectes spécialisés sur les Brassicaceae comme Pieris brassicae et Plutella xylostella se sont adaptés en développant des mécanismes de détoxification. - In response to herbivore insects, plants have evolved several defence strategies to maximize their survival and reproduction. For example, plants are often endowed with trichomes, spines and a thick cuticule. In addition, plants can produce anti-digestive proteins and toxic secondary metabolites like nicotine, tannins and glucosinolates (GS). These physical and chemical barriers have an energetic cost to the detriment of growth and reproduction. As a consequence, in absence of insects, plants allocate their energy to development and growth. On the contrary, an attack by herbivore insects will affect plant growth, increase trichome density and induce the production of anti-digestive proteins and secondary metabolites. At the molecular level, this inducible defence is regulated by the phytohormone jasmonic acid (JA). Thus, an attack by herbivores will be followed by a burst of JA that will induce the expression of defence genes. The aim of my thesis was to characterize which transcription factors (TF) regulate the expression of these defence genes in Arabidopsis thaliana. I could show that plants mutated in various TFs like MYC2, MYC3, MYC4, ZAT10, ZAT12, AZF2, WRKY18, WRKY40, WRKY6, ANAC019, ANAC55, ERF 13 and RRTFl were more susceptible to the herbivore Spodoptera littoralis. Furthermore, I could demonstrate that MYC2, MYC3 and MYC4 are probably the main target of the JA-signalling pathway and that they are necessary for the insect-mediated induction of most defence genes including genes involved in the biosynthesis of GS. A triple mutant myc2myc3myc4 is depleted of GS and consequently hypersensitive to insects. Moreover, I showed that GS are only efficient against generalist herbivores like S. littoralis and Heliothis virescens whereas specialized insects like Pieris brassicae and Plutella xylostella have evolved detoxification mechanisms against GS.
Resumo:
Aim. To predict the fate of alpine interactions involving specialized species, using a monophagous beetle and its host-plant as a case study. Location. The Alps. Methods. We investigated genetic structuring of the herbivorous beetle Oreina gloriosa and its specific host-plant Peucedanum ostruthium. We used genome fingerprinting (in the insect and the plant) and sequence data (in the insect) to compare the distribution of the main gene pools in the two associated species and to estimate divergence time in the insect, a proxy for the temporal origin of the interaction. We quantified the similarity in spatial genetic structures by performing a Procrustes analysis, a tool from the shape theory. Finally, we simulated recolonization of an empty space analogous to the deglaciated Alps just after ice retreat by two lineages from two species showing unbalanced dependence, to examine how timing of the recolonization process, as well as dispersal capacities of associated species, could explain the observed pattern. Results. Contrasting with expectations based on their asymmetrical dependence, patterns in the beetle and plant were congruent at a large scale. Exceptions occurred at a regional scale in areas of admixture, matching known suture zones in Alpine plants. Simulations using a lattice-based model suggested these empirical patterns arose during or soon after recolonization, long after the estimated origin of the interaction c. 0.5 million years ago. Main conclusions. Species-specific interactions are scarce in alpine habitats because glacial cycles have limited opportunities for coevolution. Their fate, however, remains uncertain under climate change. Here we show that whereas most dispersal routes are paralleled at large scale, regional incongruence implies that the destinies of the species might differ under changing climate. This may be a consequence of the host-dependence of the beetle that locally limits the establishment of dispersing insects.
Resumo:
Trail pheromones do more than simply guide social insect workers from point A to point B. Recent research has revealed additional ways in which they help to regulate colony foraging, often via positive and negative feedback processes that influence the exploitation of the different resources that a colony has knowledge of. Trail pheromones are often complementary or synergistic with other information sources, such as individual memory. Pheromone trails can be composed of two or more pheromones with different functions, and information may be embedded in the trail network geometry. These findings indicate remarkable sophistication in how trail pheromones are used to regulate colony-level behavior, and how trail pheromones are used and deployed at the individual level.
Resumo:
Abstract: Plants cannot run away to escape attacking herbivores, but they defend themselves by producing anti-digestive proteins and toxic compounds (for example glucosinolates). The first goal of this thesis was to study changes in gene expression after insect attack using microarrays. The responses of Arabidopsis thaliana to feeding by the specialist Pieris rapae and the generalist Spodoptera liffora is were compared. We found that the transcript profiles after feeding by the two chewing insects were remarkably similar, although the generalist induced a slightly stronger response. The second goal was to evaluate the implication of the four signals jasmonic acid (JA), salicylic acid (SA), ethylene (ET), and abscisic acid (ABA) in the control of insect-regulated gene expression. Using signaling mutants, we observed that JA was the predominant signal and that ABA modulated defense gene expression. In contrast, SA and ET appeared to control slightly gene expression, but only after feeding by S. litforalis. The third goal was to establish whether plant responses are really effective against insects. In accordance with the transcript profile, both insects were affected by the JA-dependent defenses, as they performed better on the JA-insensitive mutant. S. littoralis also performed better on ABA-deficient mutants, providing evidence for the role of ABA in defense against insects. When testing indole or aliphatic glucosinolate deficient mutants, we found that they were also more susceptible to insect feeding, providing some of the first genetic evidence for the defensive role of glucosinolates in planta. Finally, a glutathione-deficient mutant, pad2-1, was also more susceptible to insect feeding and we could attribute this phenotype to a lowered accumulation of the major indole glucosinolate. In this thesis, we provide a comprehensive list of insect-regulated genes, including many transcription factors that constitute interesting candidate genes for the further study of insect-induced expression changes. Understanding how the plant responses to insects are regulated will provide tools for a better management of insect pest in the field. Résumé: Les plantes ne peuvent s'échapper pour fuir les insectes qui les attaquent, mais elles se défendent en produisant des protéines anti-digestives et des composés toxiques (par exemple des glucosinolates). Le premier but de cette thèse était d'étudier les changements de l'expression génétique lors d'attaque par des insectes en utilisant des puces à ADN. Nous avons comparé la réponse d'Arabidopsis thaliana à deux espèces d'insectes avec des habitudes alimentaires différentes : le spécialiste Pieris rapae et le généraliste Spodoptera littoralis. Nous avons trouvé que les profils de transcription après l'attaque par les deux insectes sont remarquablement similaires, bien que le généraliste induise une réponse légèrement plus forte. Le deuxième but était de déterminer l'implication de quatre signaux dans le contrôle de la réponse :l'acide jasmonique (JA), l'acide salicylique (SA), l'éthylène (ET), et l'acide abscissique (ABA). En utilisant de mutants de signalisation, nous avons montré que l'acide jasmonique était le signal prédominant et que l'acide abscissique modulait l'expression génétique. D'autre part, l'acide salicylique et l'éthylène contrôlent à un degré moindre l'expression génétique, mais seulement après l'attaque par S. littoralís. Le troisième but était d'établir si les réponses des plantes sont efficaces contre les insectes. En accord avec le profil de transcription, les deux espèces d'insectes se sont mieux développées sur un mutant insensible au JA, indiquant que les défenses contrôlées par ce signal sont cruciales pour la plante. De plus, les larves de S. littorales se sont mieux développées sur des mutants déficients en ABA, ce qui fournit une preuve du rôle de l'acide abscissique dans la défense contre les insectes. En testant des mutants déficients en glucosinolates de type indole ou aliphatique, nous avons trouvé qu'ils étaient plus sensibles aux insectes, démontrant ainsi le rôle défensif des glucosinolates in planta. Finalement, le mutant déficient en glutathion pad2-1 était aussi plus sensible à l'attaque des insectes, et nous avons pu attribuer ce phénotype à une plus faible augmentation d'un indole glucosinolate dans ce mutant. Dans cette thèse, nous avons mis en évidence un nombre important de gènes contrôlés par les insectes, comprenant de nombreux facteurs de transcription qui constituent des candidats intéressants pour`étudier plus en détail les changements d'expression génétique induits par les insectes. Une meilleure compréhension de la réponse des plantes contre l'attaque des insectes devrait nous permettre de développer de nouvelles stratégies pour mieux gérer les ravageurs des cultures.
Resumo:
In the vast majority of bottom-up proteomics studies, protein digestion is performed using only mammalian trypsin. Although it is clearly the best enzyme available, the sole use of trypsin rarely leads to complete sequence coverage, even for abundant proteins. It is commonly assumed that this is because many tryptic peptides are either too short or too long to be identified by RPLC-MS/MS. We show through in silico analysis that 20-30% of the total sequence of three proteomes (Schizosaccharomyces pombe, Saccharomyces cerevisiae, and Homo sapiens) is expected to be covered by Large post-Trypsin Peptides (LpTPs) with M(r) above 3000 Da. We then established size exclusion chromatography to fractionate complex yeast tryptic digests into pools of peptides based on size. We found that secondary digestion of LpTPs followed by LC-MS/MS analysis leads to a significant increase in identified proteins and a 32-50% relative increase in average sequence coverage compared to trypsin digestion alone. Application of the developed strategy to analyze the phosphoproteomes of S. pombe and of a human cell line identified a significant fraction of novel phosphosites. Overall our data indicate that specific targeting of LpTPs can complement standard bottom-up workflows to reveal a largely neglected portion of the proteome.
Resumo:
Plutonium and americium are radionuclides particularly difficult to measure in environmental samples because they are alpha-emitters and therefore necessitate a careful separation before any measurement, either using radiometric methods or ICP-SMS. Recent developments in extraction chromatography resins such as Eichrom (R) TRU and TEVA have resolved many of the analytical problems but drawbacks such as low recovery and spectral interferences still occasionally occur. Here, we report on the use of the new Eichrom (R) DGA resin in association with TEVA resin and high pressure microwave acid leaching for the sequential determination of plutonium and americium in environmental samples. The method results in average recoveries of 83 +/- 15% for plutonium and 73 +/- 22% for americium (n = 60), and a less than 10% deviation from reference values of four IAEA reference materials and three samples from intercomparisons exercises. The method is also suitable for measuring Pu-239 in water samples at the mu Bq/l level, if ICP-SMS is used for the measurement.