73 resultados para innovation agenda


Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT This dissertation focuses on new technology commercialization, innovation and new business development. Industry-based novel technology may achieve commercialization through its transfer to a large research laboratory acting as a lead user and technical partner, and providing the new technology with complementary assets and meaningful initial use in social practice. The research lab benefits from the new technology and innovation through major performance improvements and cost savings. Such mutually beneficial collaboration between the lab and the firm does not require any additional administrative efforts or funds from the lab, yet requires openness to technologies and partner companies that may not be previously known to the lab- Labs achieve the benefits by applying a proactive procurement model that promotes active pre-tender search of new technologies and pre-tender testing and piloting of these technological options. The collaboration works best when based on the development needs of both parties. This means that first of all the lab has significant engineering activity with well-defined technological needs and second, that the firm has advanced prototype technology yet needs further testing, piloting and the initial market and references to achieve the market breakthrough. The empirical evidence of the dissertation is based on a longitudinal multiple-case study with the European Laboratory for Particle Physics. The key theoretical contribution of this study is that large research labs, including basic research, play an important role in product and business development toward the end, rather than front-end, of the innovation process. This also implies that product-orientation and business-orientation can contribute to basic re-search. The study provides practical managerial and policy guidelines on how to initiate and manage mutually beneficial lab-industry collaboration and proactive procurement.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammals are characterized by specific phenotypic traits that include lactation, hair, and relatively large brains with unique structures. Individual mammalian lineages have, in turn, evolved characteristic traits that distinguish them from others. These include obvious anatom¬ical differences but also differences related to reproduction, life span, cognitive abilities, be¬havior. and disease susceptibility. However, the molecular basis of the diverse mammalian phenotypes and the selective pressures that shaped their evolution remain largely unknown. In the first part of my thesis, I analyzed the genetic factors associated with the origin of a unique mammalian phenotype lactation and I studied the selective pressures that forged the transition from oviparity to viviparity. Using a comparative genomics approach and evolutionary simulations, I showed that the emergence of lactation, as well as the appear¬ance of the casein gene family, significantly reduced selective pressure on the major egg-yolk proteins (the vitellogenin family). This led to a progressive loss of vitellogenins, which - in oviparous species - act as storage proteins for lipids, amino acids, phosphorous and calcium in the isolated egg. The passage to internal fertilization and placentation in therian mam¬mals rendered vitellogenins completely dispensable, which ended in the loss of the whole gene family in this lineage. As illustrated by the vitellogenin study, changes in gene content are one possible underlying factor for the evolution of mammalian-specific phenotypes. However, more subtle genomic changes, such as mutations in protein-coding sequences, can also greatly affect the phenotypes. In particular, it was proposed that changes at the level of gene reg¬ulation could underlie many (or even most) phenotypic differences between species. In the second part of my thesis, I participated in a major comparative study of mammalian tissue transcriptomes, with the goal of understanding how evolutionary forces affected expression patterns in the past 200 million years of mammalian evolution. I showed that, while com¬parisons of gene expressions are in agreement with the known species phylogeny, the rate of expression evolution varies greatly among lineages. Species with low effective population size, such as monotremes and hominoids, showed significantly accelerated rates of gene expression evolution. The most likely explanation for the high rate of gene expression evolution in these lineages is the accumulation of mildly deleterious mutations in regulatory regions, due to the low efficiency of purifying selection. Thus, our observations are in agreement with the nearly neutral theory of molecular evolution. I also describe substantial differences in evolutionary rates between tissues, with brain being the most constrained (especially in primates) and testis significantly accelerated. The rate of gene expression evolution also varies significantly between chromosomes. In particular, I observed an acceleration of gene expression changes on the X chromosome, probably as a result of adaptive processes associated with the origin of therian sex chromosomes. Lastly, I identified several individual genes as well as co-regulated expression modules that have undergone lineage specific expression changes and likely under¬lie various phenotypic innovations in mammals. The methods developed during my thesis, as well as the comprehensive gene content analyses and transcriptomics datasets made available by our group, will likely prove to be useful for further exploratory analyses of the diverse mammalian phenotypes.