45 resultados para hydro-thermal dolomite
Resumo:
The thermal energetics of rodents from cool, wet tropical highlands are poorly known. Metabolic rate, body temperature and thermal conductance were measured in the moss-forest rat, Rattus niobe (Rodentia), a small murid endemic to the highlands of New Guinea. These data were evaluated in the context of the variation observed in the genus Rattus and among tropical murids. In 7 adult R. niobe, basal metabolic rate (BMR) averaged 53.6±6.6mLO2h(-1), or 103% of the value predicted for a body mass of 42.3±5.8g. Compared to other species of Rattus, R. niobe combines a low body temperature (35.5±0.6°C) and a moderately low minimal wet thermal conductance cmin (5.88±0.7mLO2h(-1)°C(-1), 95% of predicted) with a small size, all of which lead to reduced energy expenditure in a constantly cool environment. The correlations of mean annual rainfall and temperature, altitude and body mass with BMR, body temperature and cmin were analyzed comparatively among tropical Muridae. Neither BMR, nor cmin or body temperature correlated with ambient temperature or altitude. Some of the factors which promote high BMR in higher latitude habitats, such as seasonal exposure to very low temperature and short reproductive season, are lacking in wet montane tropical forests. BMR increased with rainfall, confirming a pattern observed among other assemblages of mammals. This correlation was due to the low BMR of several desert adapted murids, while R. niobe and other species from wet habitats had a moderate BMR.
Resumo:
The thermal springs of Acquarossa and the nearby mineral springs of Soia have outlet temperatures of 12 degrees to 25 degrees C, TDS of 2290 to 3000 mg/kg and Ca-SO4 to Ca-SO4-HCO3 composition. Chemical geothermometers suggest reservoir temperatures close to 60 degrees C. P-CO2 values at depth are estimated to range from 0.3 to 2 bar. delta D and delta(18)O values indicate a meteoric origin and recharge elevations of 1600 +/- 150 m above sea level (a.s.l.) for these thermal and mineral waters. All these waters discharge from the overturned limb of the Simano nappe, probably dose to the contact between basement and underlying cover rocks. They therefore represent rain waters that descend slowly, heat at depth and locally rise relatively quickly to the surface, preserving part of their physical and chemical characteristics. (C) 1999 CNR. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The calculation of elasticity parameters by sonic and ultra sonic wave propagation in saturated soils using Biot's theory needs the following variables : forpiation density and porosity (p, ø), compressional and shear wave velocities (Vp, Vs), fluid density, viscosity and compressibility (Pfi Ilfi Ki), matrix density and compressibility (p" K), The first four parameters can be determined in situ using logging probes. Because fluid and matrix characteristics are not modified during core extraction, they can be obtained through laboratory measurements. All parameters necessitate precise calibrations in various environments and for specific range of values encountered in soils. The slim diameter of boreholes in shallow geophysics and the high cost of petroleum equipment demand the use of specific probes, which usually only give qualitative results. The measurement 'of density is done with a gamma-gamma probe and the measurement of hydrogen index, in relation to porosity, by a neutron probe. The first step of this work has been carried out in synthetic formations in the laboratory using homogeneous media of known density and porosity. To establish borehole corrections different casings have been used. Finally a comparison between laboratory and in situ data in cored holes of known geometry and casing has been performed.
Resumo:
INTRODUCTION: Quantitative sensory testing (QST) is widely used in human research to investigate the integrity of the sensory function in patients with pain of neuropathic origin, or other causes such as low back pain. Reliability of QST has been evaluated on both sides of the face, hands and feet as well as on the trunk (Th3-L3). In order to apply these tests on other body-parts such as the lower lumbar spine, it is important first to establish reliability on healthy individuals. The aim of this study was to investigate intra-rater reliability of thermal QST in healthy adults, on two sites within the L5 dermatome of the lumbar spine and lower extremity. METHODS: Test-retest reliability of thermal QST was determined at the L5-level of the lumbar spine and in the same dermatome on the lower extremity in 30 healthy persons under 40 years of age. Results were analyzed using descriptive statistics and intraclass correlation coefficient (ICC). Values were compared to normative data, using Z-transformation. RESULTS: Mean intraindividual differences were small for cold and warm detection thresholds but larger for pain thresholds. ICC values showed excellent reliability for warm detection and heat pain threshold, good-to-excellent reliability for cold pain threshold and fair-to-excellent reliability for cold detection threshold. ICC had large ranges of confidence interval (95%). CONCLUSION: In healthy adults, thermal QST on the lumbar spine and lower extremity demonstrated fair-to-excellent test-retest reliability.
Resumo:
Rate of metabolism and body temperature were studied between -6°C and 38°C in the common pipistrelle bat Pipistrellus pipistrellus (Vespertilionidae), a European species lying close to the lower end of the mammalian size range (body mass 4.9±0.8g, N=28). Individuals maintained only occasionally a normothermic body temperature averaging 35.4±1.1°C (N=4) and often showed torpor during metabolic runs. The thermoneutral zone was found above 33°C, and basal rate of metabolism averaged 7.6±0.8mL O(2)h(-1) (N=28), which is 69% of the value predicted on the basis of body mass. Minimal wet thermal conductance was 161% of the expected value. During torpor, the rate of metabolism was related exponentially to body temperature with a Q(10) value of 2.57. Torpid bats showed intermittent ventilation, with the frequency of ventilatory cycles increasing exponentially with body temperature. Basal rate of metabolism (BMR) varied significantly with season and body temperature, but not with body mass. It was lower before the hibernation period than during the summer. The patterns observed are generally consistent with those exhibited by other vespertilionids of temperate regions. However, divergences occur with previous measurements on European pipistrelles, and the causes of the seasonal variation in BMR, which has only rarely been searched for among vespertilionids, remain to be examined.
Resumo:
The major goal of evolutionary thermal biology is to understand how variation in temperature shapes phenotypic evolution. Comparing thermal reaction norms among populations from different thermal environments allows us to gain insights into the evolutionary mechanisms underlying thermal adaptation. Here, we have examined thermal adaptation in six wild populations of the fruit fly (Drosophila melanogaster) from markedly different natural environments by analyzing thermal reaction norms for fecundity, thorax length, wing area, and ovariole number under ecologically realistic fluctuating temperature regimes in the laboratory. Contrary to expectation, we found only minor differences in the thermal optima for fecundity among populations. Differentiation among populations was mainly due to differences in absolute (and partly also relative) thermal fecundity performance. Despite significant variation among populations in the absolute values of morphological traits, we observed only minor differentiation in their reaction norms. Overall, the thermal reaction norms for all traits examined were remarkably similar among different populations. Our results therefore suggest that thermal adaptation in D. melanogaster predominantly involves evolutionary changes in absolute trait values rather than in aspects of thermal reaction norms.
Geochemistry of the thermal springs and fumaroles of Basse-Terre Island, Guadeloupe, Lesser Antilles
Resumo:
The purpose of this work was to study jointly the volcanic-hydrothermal system of the high-risk volcano La Soufriere, in the southern part of Basse-Terre, and the geothermal area of Bouillante, on its western coast, to derive an all-embracing and coherent conceptual geochemical model that provides the necessary basis for adequate volcanic surveillance and further geothermal exploration. The active andesitic dome of La Soufriere has erupted eight times since 1660, most recently in 1976-1977. All these historic eruptions have been phreatic. High-salinity, Na-CI geothermal liquids circulate in the Bouillante geothermal reservoir, at temperatures close to 250 degrees C. These Na-CI solutions rise toward the surface, undergo boiling and mixing with groundwater and/or seawater, and feed most Na-CI thermal springs in the central Bouillante area. The Na-Cl thermal springs are surrounded by Na-HCO3 thermal springs and by the Na-Cl thermal spring of Anse a la Barque (a groundwater slightly mixed with seawater), which are all heated through conductive transfer. The two main fumarolic fields of La Soufriere area discharge vapors formed through boiling of hydrothermal aqueous solutions at temperatures of 190-215 degrees C below the ``Ty'' fault area and close to 260 degrees C below the dome summit. The boiling liquid producing the vapors of the Ty fault area has SD and delta(18)O values relatively similar to those of the Na-CI liquids of the Bouillante geothermal reservoir, whereas the liquid originating the vapors of the summit fumaroles is strongly enriched in O-18, due to input of magmatic fluids from below. This process is also responsible for the paucity of CH;I in the fumaroles. The thermal features around La Soufriere dome include: (a) Ca-SO4 springs, produced through absorption of hydrothermal vapors in shallow groundwaters; (b) conductively heated, Ca-Na-HCO3 springs; and (c) two Ca-Na-Cl springs produced through mixing of shallow Ca-SO4 waters and deep Na-Cl hydrothermal liquids. The geographical distribution of the different thermal features of La Soufriere area indicates the presence of: (a) a central zone dominated by the ascent of steam, which either discharges at the surface in the fumarolic fields or is absorbed in shallow groundwaters; and (b) an outer zone, where the shallow groundwaters are heated through conduction or addition of Na-Cl liquids coming from hydrothermal aquifer(s).
Resumo:
Obtaining the desired dry weight in dialysis patients is challenging once residual diuresis has disappeared, considering the trend of increasing dietary salt intake and shortening dialysis time over the last 40 years. We describe the case of a 55-year-old patient of Sudanese origin, who presented excessive interdialytic weight gain and hypertension on maintenance hemodialysis. After failure of conservative measures, a therapy of daily hot water baths of 30minutes each on non-dialysis days was introduced. All clinical parameters improved, including potassium profile. In this article, we review the history, pathophysiological mechanisms, efficacy and possible side effects of this interesting, somewhat forgotten technique.
Resumo:
Recent ink dating methods focused mainly on changes in solvent amounts occurring over time. A promising method was developed at the Landeskriminalamt of Munich using thermal desorption (TD) followed by gas chromatography / mass spectrometry (GC/MS) analysis. Sequential extractions of the phenoxyethanol present in ballpoint pen ink entries were carried out at two different temperatures. This method is applied in forensic practice and is currently implemented in several laboratories participating to the InCID group (International Collaboration on Ink Dating). However, harmonization of the method between the laboratories proved to be a particularly sensitive and time consuming task. The main aim of this work was therefore to implement the TD-GC/MS method at the Bundeskriminalamt (Wiesbaden, Germany) in order to evaluate if results were comparable to those obtained in Munich. At first validation criteria such as limits of reliable measurements, linearity and repeatability were determined. Samples were prepared in three different laboratories using the same inks and analyzed using two TDS-GC/MS instruments (one in Munich and one in Wiesbaden). The inter- and intra-laboratory variability of the ageing parameter was determined and ageing curves were compared. While inks stored in similar conditions yielded comparable ageing curves, it was observed that significantly different storage conditions had an influence on the resulting ageing curves. Finally, interpretation models, such as thresholds and trend tests, were evaluated and discussed in view of the obtained results. Trend tests were considered more suitable than threshold models. As both approaches showed limitations, an alternative model, based on the slopes of the ageing curves, was also proposed.
Resumo:
Crystal size distributions (CSD) of periclase in contact metamorphic dolomite marbles are presented for two profiles near the Cima Uzza summit in the southern Adamello Massif (Italy). The database was combined with geochemical and petrological information to deduce the controls on the periclase-forming reaction. The contact metamorphic dolomite marbles are exposed at the contact of mafic intrusive rocks and are partially surrounded by them. Brucite is retrograde and pseudomorphs spherical periclase crystals. Prograde periclase growth is the consequence of limited infiltration of water-rich fluid at T near 605C. Stable isotope data show depletion in (13)C and (18)O over a narrow region (40 cm) near the magmatic contact, whereas the periclase-forming reaction front extends up to 4 m from the contact. CSD analyses along the two profiles show that the median grain size of the periclase crystals does not change, but that there is a progressively greater distribution of grain sizes, including a greater proportion of larger grains, with increasing distance from the contact. A qualitative model, based on the textural and geochemical data, attributes these variations in grain size to changing reaction affinities along a kinetically dispersed infiltration front. This study highlights the need to invoke disequilibrium processes for metamorphic mineral growth and expands the use of CSDs to systems of mineral formation driven by fluid infiltration.
Resumo:
This work presents geochemistry and structural geology data concerning the low enthalpy geothermal circuits of the Argentera crystalline Massif in northwestern Italian Alps. I n this area some thermal springs (50-60 degreesC), located in the small Bagni di Vinadio village, discharge mixtures made up of a Na-Cl end-member and a Na-SO4 component. The latter is also discharged by the thermal springs of Terme di Valdieri located some kilometres apart within the same tectonic complex. Both end-members share the same meteoric origin and the same reservoir temperature, which is close to 150 degreesC. Explanations are thus required to understand how they reach the surface and how waters of the same origin and circulating in similar rocks can attain such different compositions. Sodium-sulphate waters discharged at both sites, likely represent the common interaction product of meteoric waters with the widespread granitic-migmatitic rocks of the Argentera Massif, whereas Na-CI waters originate through leaching of mineralised cataclastic rocks, which are rich in phyllosilicatic minerals and fluid inclusions, both acting as Cl- sources. Due to the relatively low inferred geothermal gradient of the region, -25C/km, meteoric waters have to descend to depths of 5.5-6 km to attain temperatures of similar to 150 degreesC. These relevant depths can be reached by descending meteoric waters, due to the recent extensional stress field, which allows the development of geothermal circulations at greater depths than in other sectors of the Alps by favouring a greater fractures aperture. The ascent of the thermal waters rakes place along brittle shear zones. In both sites, the thermal waters emerge at the bottoms of the valleys, close to either the lateral termination of a brittle shear zone at Terme di Valdieri, or a step-over between two en-echelon brittle shear zones at Bagni di Vinadio. These observations attest to a strong control operated on the location of outlet regions by both brittle tectonics and the minima in hydraulic potential inside the fractured massif.