119 resultados para honey bee brood
Resumo:
The influence of various social factors on the production of males was investigated in the Argentine ant, Iridomyrmex humilis. In this polygynous species, the workers which are monomorphic are unable to lay reproductive eggs, so all the males are the progeny of the queens. Although male eggs appear to be laid by mated queens throughout the year, in large stock colonies males are reared periodically (every 3 or 4 months); males develop from brood taken from these colonies at any point in the cycle and given queenless or queenright (1 to 5 queens) units. This is in striking contrast to many other species of ants where it is generally assumed that male eggs are laid seasonnally. Comparative experiments suggest that several related factors influence the rearing of males as far as the pupal stage. Worker/larva ratio: The proportion of male larvae developing in standardized units in which the worker/larva ratio was varied from 0.25 to 25 demonstrated that low ratios inhibit male production. Queen influence: In standardized units where the worker/larva ratio was high the presence of queens did not inhibit the rearing of males suggesting that there is no queen inhibitory pheromone controlling male experimental production. Data suggest evidence that queens prevent male production by means of appropriation of food. Diet: Male larvae failed to pupate in experimental societies deprived of protein. Thus, the production of males appears to be controlled by the amount of food available to larvae. This depends on foraging activity, the quantity of brood in relation to the number of workers and the number of queens in the society.
Resumo:
Formica lugubris and E paralugubris are sympatric sibling species of wood ants, both of which are widely distributed in Switzerland. Until 1996 they were considered the same species, E lugubris. To investigate whether the two species can be distinguished based on discrimination cues used by the workers we used the pupa-carrying test first introduced by Rainer Rosengren. In this test workers of discriminator colonies are faced with two kinds of pupae and their preferences for one of the types are recorded based on differential retrieval. Interspecific comparisons showed that ants preferred conspecific worker pupae to those of the sibling species regardless whether the pupae were con-colonial or hetero-colonial. Hence, this test can be used as a taxonomic tool to identify wood ants hardly distinguishable by morphological characters. In intraspecific comparisons the highly polygynous (many queens per colony) E paralugubris, the polygynous form of E lugubris and the monogynous (single queen per nest) to weakly polygynous form of E lugubris expressed different trends in their preference behaviour (with nestmate recognition in 14%, 20% and 31% of replicates, respectively). Only F paralugubris presented no significant nestmate recognition.
Resumo:
Social insects use multiple lines of collective defences to combat pathogens. One example of a behav- ioural group defence is the use of antimicrobial plant compounds to disinfect the nest. Indeed, wood ants collect coniferous tree resin, and the presence of resin in their nest protects them against fungal and bacterial pathogens. Many questions remain on the mechanisms of resin use, including which factors elicit resin collection and placement within nests. Here, we investigated whether the presence of brood induces Formica paralugubris workers to collect more resin, and whether the workers preferentially place resin near the brood. We also tested whether the collection and placement of resin depends on the presence of the fungal entomopathogen Beauveria bassiana. Workers brought more resin to their nest when brood was present, and preferentially placed the resin near the brood. In contrast, workers did not increase resin collection in response to exposure to B. bassiana, nor did they place resin closer to contaminated brood or contaminated areas of the nest. This lack of response may be explained by a limited effect of resin against the germination and growth of B. bassiana in vitro. Overall, our main result is that woods ants actively position resin near the brood, which probably confers prophylactic protection against other detrimental microorganisms.
Resumo:
The very diverse social systems of sweat bees make them interesting models to study social evolution. Here we focus on the dispersal behaviour and social organization of Halictus scabiosae, a common yet poorly known species of Europe. By combining field observations and genetic data, we show that females have multiple reproductive strategies, which generates a large diversity in the social structure of nests. A detailed microsatellite analysis of 60 nests revealed that 55% of the nests contained the offspring of a single female, whereas the rest had more complex social structures, with three clear cases of multiple females reproducing in the same nest and frequent occurrence of unrelated individuals. Drifting among nests was surprisingly common, as 16% of the 122 nests in the overall sample and 44% of the nests with complex social structure contained females that had genotypes consistent with being full-sisters of females sampled in other nests of the population. Drifters originated from nests with an above-average productivity and were unrelated to their nestmates, suggesting that drifting might be a strategy to avoid competition among related females. The sex-specific comparison of genetic differentiation indicated that dispersal was male-biased, which would reinforce local resource competition among females. The pattern of genetic differentiation among populations was consistent with a dynamic process of patch colonization and extinction, as expected from the unstable, anthropogenic habitat of this species. Overall, our data show that H. scabiosae varies greatly in dispersal behaviour and social organization. The surprisingly high frequency of drifters echoes recent findings in wasps and bees, calling for further investigation of the adaptive basis of drifting in the social insects.
Resumo:
While evidence is accumulating that stress-induced glucocorticoid responses help organisms to quickly adjust their physiology and behaviour to life-threatening environmental perturbations, the function and the ecological factors inducing variation in baseline glucocorticoid levels remain poorly understood. In this study we investigated the effects of brood size by experimentally manipulating the number of nestlings per brood and the effect of weather condition on baseline corticosterone levels of nestling Alpine swifts (Apus melba). We also examined the potential negative consequences of an elevation of baseline corticosterone on nestling immunity by correlating corticosterone levels with ectoparasite intensity and the antibody production towards a vaccine. Although nestlings reared in enlarged broods were in poorer condition than nestlings reared in reduced broods, they showed similar baseline corticosterone levels. In contrast, nestling baseline corticosterone levels were higher immediately after cold and rainy episodes with strong winds. Neither nestling infestation rate by ectoparastic flies nor nestling antibody production against a vaccine was correlated with baseline corticosterone levels. Thus, our results suggest that altricial Alpine swift nestlings can quickly modulate baseline corticosterone levels in response to unpredictable variations in meteorological perturbation but not to brood size which may be associated with the degree of sibling competition. Apparently, short-term elevations of baseline corticosterone have no negative effects on nestling immunocompetence.
Resumo:
When siblings differ markedly in their need for food, they may benefit from signalling to each other their willingness to contest the next indivisible food item delivered by the parents. This sib-sib communication system, referred to as 'sibling negotiation', may allow them to adjust optimally to investment in begging. Using barn owl (Two alba) broods. I assessed the role of within-brood age hierarchy on sibling negotiation, and in turn on jostling for position where parents predictably deliver food (i.e. nest-box entrance), begging and within-brood food allocation. More specifically, I examined three predictions derived from a game-theoretical model of sibling negotiation where a senior and a junior sibling compete for food resources (Roulin, 2002a, Johnstone and Roulin, 2003): (1) begging effort invested by the senior sibling should be less sensitive to the junior sibling's negotiation than vice versa; (2) the junior should invest less effort in sibling negotiation than its senior sibling but a similar amount of effort in begging; and (3) within-brood food allocation should be directly related to begging but only indirectly to sibling negotiation. Two-chick broods were created and vocalization in the absence (negotiation signals directed to siblings) and presence (begging signals directed to parents) of parents was recorded. In support of the first prediction, juniors begged at a low cadence after their senior sibling negotiated intensely, probably because negotiation reflects prospective investment in begging and hence willingness to compete. In contrast, the begging of senior siblings was not sensitive to their junior sibling's negotiation. In contrast to the second prediction, juniors negotiated and begged more intensely than their senior sibling apparently because they were hungrier rather than younger. In line with the third prediction, juniors monopolized food delivered by their parents when their senior sibling begged at a low level. The begging cadence of both the junior and senior sibling, the junior's negotiation cadence, the difference in age between the two nest-mates and jostling for position were not associated with the likelihood of monopolizing food. In conclusion, sibling negotiation appears to influence begging behaviour, which, in turn, affects within-brood food allocation. Juniors may negotiate to challenge their senior siblings, and thereby determine whether seniors are less hungry before deciding to beg for food. In contrast, seniors may negotiate to deter juniors from begging.
Resumo:
We tested the cross-amplification of 37 microsatellites in a population of starlings (Stumus vulgaris). Twenty-three of them amplified and five exhibited a large number of alleles per locus and high heterozygosity (on average: 14.6 alleles/locus and H. = 0.704). We assessed the occurrence of extra-pair paternity (EPP) and intraspecific brood parasitism GBP) in this population. The EPP rate was 16% to 18% offspring from 43% to 45% of nests. IBP was very variable between two successive years (14% to 27% chicks from 25% to 64% of clutches). These five polymorphic markers will be of potential use in studies of genetic diversity, population structure and reproductive strategy of this species.
Resumo:
In animal societies, cooperation for the common wealth and latent conflicts due to the selfish interests of individuals are in delicate balance. In many ant species, colonies contain multiple breeders and workers interact with nestmates of varying degrees of relatedness. Therefore, workers could increase their inclusive fitness by preferentially caring for their closest relatives, yet evidence for nepotism in insect societies remains scarce and controversial. We experimentally demonstrate that workers of the ant Formica exsecta do not discriminate between highly related and unrelated brood, but that brood viability differs between queens. We further show that differences in brood viability are sufficient to explain a relatedness pattern that has previously been interpreted as evidence for nepotism. Hence, our findings support the view that nepotism remains elusive in social insects and emphasize the need for further controlled experiments.
Resumo:
Social organisms face a high risk of epidemics, and respond to this threat by combining efficient individual and collective defences against pathogens. An intriguing and little studied feature of social animals is that individual pathogen resistance may depend not only on genetic or maternal factors, but also on the social environment during development. Here, we used a cross-fostering experiment to investigate whether the pathogen resistance of individual ant workers was shaped by their own colony of origin or by the colony of origin of their carers. The origin of care-giving workers significantly influenced the ability of newly eclosed cross-fostered Formica selysi workers to resist the fungal entomopathogen Beauveria bassiana. In particular, carers that were more resistant to the fungal entomopathogen reared more resistant workers. This effect occurred in the absence of post-infection social interactions, such as trophallaxis and allogrooming. The colony of origin of eggs significantly influenced the survival of the resulting individuals in both control and pathogen treatments. There was no significant effect of the social organization (i.e. whether colonies contain a single or multiple queens) of the colony of origin of either carers or eggs. Our experiment reveals that social interactions during development play a central role in moulding the resistance of emerging workers.
Resumo:
How and why do bees become social? A transplant experiment shows that sweat bees can adopt a solitary or social lifestyle in response to their environment.
Resumo:
Animal societies vary in the number of breeders per group, which affects many socially and ecologically relevant traits. In several social insect species, including our study species Formica selysi, the presence of either one or multiple reproducing females per colony is generally associated with differences in a suite of traits such as the body size of individuals. However, the proximate mechanisms and ontogenetic processes generating such differences between social structures are poorly known. Here, we cross-fostered eggs originating from single-queen (= monogynous) or multiple-queen (= polygynous) colonies into experimental groups of workers from each social structure to investigate whether differences in offspring survival, development time and body size are shaped by the genotype and/or prefoster maternal effects present in the eggs, or by the social origin of the rearing workers. Eggs produced by polygynous queens were more likely to survive to adulthood than eggs from monogynous queens, regardless of the social origin of the rearing workers. However, brood from monogynous queens grew faster than brood from polygynous queens. The social origin of the rearing workers influenced the probability of brood survival, with workers from monogynous colonies rearing more brood to adulthood than workers from polygynous colonies. The social origin of eggs or rearing workers had no significant effect on the head size of the resulting workers in our standardized laboratory conditions. Overall, the social backgrounds of the parents and of the rearing workers appear to shape distinct survival and developmental traits of ant brood.
Resumo:
The differentiation of workers into morphological subcastes (e.g., soldiers) represents an important evolutionary transition and is thought to improve division of labor in social insects. Soldiers occur in many ant and termite species, where they make up a small proportion of the workforce. A common assumption of worker caste evolution is that soldiers are behavioral specialists. Here, we report the first test of the "rare specialist" hypothesis in a eusocial bee. Colonies of the stingless bee Tetragonisca angustula are defended by a small group of morphologically differentiated soldiers. Contrary to the rare specialist hypothesis, we found that soldiers worked more (+34%-41%) and performed a greater variety of tasks (+23%-34%) than other workers, particularly early in life. Our results suggest a "rare elite" function of soldiers in T. angustula, that is, that they perform a disproportionately large amount of the work. Division of labor was based on a combination of temporal and physical castes, but soldiers transitioned faster from one task to the next. We discuss why the rare specialist assumption might not hold in species with a moderate degree of worker differentiation.
Resumo:
As increasingly large molecular data sets are collected for phylogenomics, the conflicting phylogenetic signal among gene trees poses challenges to resolve some difficult nodes of the Tree of Life. Among these nodes, the phylogenetic position of the honey bees (Apini) within the corbiculate bee group remains controversial, despite its considerable importance for understanding the emergence and maintenance of eusociality. Here, we show that this controversy stems in part from pervasive phylogenetic conflicts among GC-rich gene trees. GC-rich genes typically have a high nucleotidic heterogeneity among species, which can induce topological conflicts among gene trees. When retaining only the most GC-homogeneous genes or using a nonhomogeneous model of sequence evolution, our analyses reveal a monophyletic group of the three lineages with a eusocial lifestyle (honey bees, bumble bees, and stingless bees). These phylogenetic relationships strongly suggest a single origin of eusociality in the corbiculate bees, with no reversal to solitary living in this group. To accurately reconstruct other important evolutionary steps across the Tree of Life, we suggest removing GC-rich and GC-heterogeneous genes from large phylogenomic data sets. Interpreted as a consequence of genome-wide variations in recombination rates, this GC effect can affect all taxa featuring GC-biased gene conversion, which is common in eukaryotes.