46 resultados para higher-order element
Resumo:
Abstract Sitting between your past and your future doesn't mean you are in the present. Dakota Skye Complex systems science is an interdisciplinary field grouping under the same umbrella dynamical phenomena from social, natural or mathematical sciences. The emergence of a higher order organization or behavior, transcending that expected of the linear addition of the parts, is a key factor shared by all these systems. Most complex systems can be modeled as networks that represent the interactions amongst the system's components. In addition to the actual nature of the part's interactions, the intrinsic topological structure of underlying network is believed to play a crucial role in the remarkable emergent behaviors exhibited by the systems. Moreover, the topology is also a key a factor to explain the extraordinary flexibility and resilience to perturbations when applied to transmission and diffusion phenomena. In this work, we study the effect of different network structures on the performance and on the fault tolerance of systems in two different contexts. In the first part, we study cellular automata, which are a simple paradigm for distributed computation. Cellular automata are made of basic Boolean computational units, the cells; relying on simple rules and information from- the surrounding cells to perform a global task. The limited visibility of the cells can be modeled as a network, where interactions amongst cells are governed by an underlying structure, usually a regular one. In order to increase the performance of cellular automata, we chose to change its topology. We applied computational principles inspired by Darwinian evolution, called evolutionary algorithms, to alter the system's topological structure starting from either a regular or a random one. The outcome is remarkable, as the resulting topologies find themselves sharing properties of both regular and random network, and display similitudes Watts-Strogtz's small-world network found in social systems. Moreover, the performance and tolerance to probabilistic faults of our small-world like cellular automata surpasses that of regular ones. In the second part, we use the context of biological genetic regulatory networks and, in particular, Kauffman's random Boolean networks model. In some ways, this model is close to cellular automata, although is not expected to perform any task. Instead, it simulates the time-evolution of genetic regulation within living organisms under strict conditions. The original model, though very attractive by it's simplicity, suffered from important shortcomings unveiled by the recent advances in genetics and biology. We propose to use these new discoveries to improve the original model. Firstly, we have used artificial topologies believed to be closer to that of gene regulatory networks. We have also studied actual biological organisms, and used parts of their genetic regulatory networks in our models. Secondly, we have addressed the improbable full synchronicity of the event taking place on. Boolean networks and proposed a more biologically plausible cascading scheme. Finally, we tackled the actual Boolean functions of the model, i.e. the specifics of how genes activate according to the activity of upstream genes, and presented a new update function that takes into account the actual promoting and repressing effects of one gene on another. Our improved models demonstrate the expected, biologically sound, behavior of previous GRN model, yet with superior resistance to perturbations. We believe they are one step closer to the biological reality.
Resumo:
SUMMARY The human auditory cortex, located on the supratemporal plane of the temporal lobe, is divided in a primary auditory area and several non-primary areas surrounding it. These different areas show anatomical and functional differences. Many studies have focussed on auditory areas in non-human primates, using investigation techniques such as electrophysiological recordings, tracing of neural connections, or immunohistochemical and histochemical staining. Some of these studies have suggested parallel and hierarchical organization of the cortical auditory areas as well as subcortical auditory relays. In humans, only few studies have investigated these regions immunohistochemically, but activation and lesion studies speak in favour of parallel and hierarchical organization, very similar to that of non-human primates. Calcium-binding proteins and metabolic markers were used to investigate possible correlates of hierarchical and parallel organization in man. Calcium-binding proteins, parvalbumin, calretinin and calbindin, modulate the concentration of intracellular free calcium ions and were found in distinct subpopulations of GABAergic neurons in non-human primates species. In our study, their distribution showed several differences between auditory areas: the primary auditory area was darkly stained for both parvalbumin and calbindin, and their expression rapidly decreased while moving away from the primary area. This staining pattern suggests a hierarchical organization of the areas, in which the more darkly stained areas could correspond to an earlier integration level and the areas showing light staining may correspond to higher level integration areas. Parallel organization of primary and non-primary auditory areas was suggested by the complementarity, within a given area, between parvalbumin and calbindin expression across layers. To investigate the possible differences in the energetic metabolism of the cortical auditory areas, several metabolic markers were used: cytochrome oxidase and LDH1 were used as oxidative metabolism markers and LDH5 was used as glycolytic metabolism marker. The results obtained show a difference in the expression of enzymes involved in oxidative metabolism between areas. In the primary auditory area the oxidative metabolism markers were maximally expressed in layer IV. In contrast, higher order areas showed maximal staining in supragranular layers. The expression of LDH5 varied in patches, but did not differ between the different hierarchical auditory areas. The distribution of the two LDH enzymes isoforms also provides information about cellular aspects of metabolic organization, since neurons expressed the LDH1 isoform whereas astrocytes express primarily LDH5, but some astrocytes also contained the LDH1 isoform. This cellular distribution pattern supports the hypothesis of the existence of an astrocyte-neuron lactate shuttle, previously suggested in rodent studies, and in particular of lactate transfer from astrocytes, which produce lactate from the glucose obtained from the circulation, to neurons that use lactate as energy substrate. In conclusion, the hypothesis of parallel and hierarchical organization of the auditory areas can be supported by CaBPs, cytochrome oxidase and LDH1 distribution. Moreover, the two LDHs cellular distribution pattern support the hypothesis of an astrocyte-neuron lactate shuttle in human cortex.
Resumo:
During adolescence, cognitive abilities increase robustly. To search for possible related structural alterations of the cerebral cortex, we measured neuronal soma dimension (NSD = width times height), cortical thickness and neuronal densities in different types of neocortex in post-mortem brains of five 12-16 and five 17-24 year-olds (each 2F, 3M). Using a generalized mixed model analysis, mean normalized NSD comparing the age groups shows layer-specific change for layer 2 (p < .0001) and age-related differences between categorized type of cortex: primary/primary association cortex (BA 1, 3, 4, and 44) shows a generalized increase; higher-order regions (BA 9, 21, 39, and 45) also show increase in layers 2 and 5 but decrease in layers 3, 4, and 6 while limbic/orbital cortex (BA 23, 24, and 47) undergoes minor decrease (BA 1, 3, 4, and 44 vs. BA 9, 21, 39, and 45: p = .036 and BA 1, 3, 4, and 44 vs. BA 23, 24, and 47: p = .004). These data imply the operation of cortical layer- and type-specific processes of growth and regression adding new evidence that the human brain matures during adolescence not only functionally but also structurally.
Resumo:
The interpretation of the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) is based on a 4-factor model, which is only partially compatible with the mainstream Cattell-Horn-Carroll (CHC) model of intelligence measurement. The structure of cognitive batteries is frequently analyzed via exploratory factor analysis and/or confirmatory factor analysis. With classical confirmatory factor analysis, almost all crossloadings between latent variables and measures are fixed to zero in order to allow the model to be identified. However, inappropriate zero cross-loadings can contribute to poor model fit, distorted factors, and biased factor correlations; most important, they do not necessarily faithfully reflect theory. To deal with these methodological and theoretical limitations, we used a new statistical approach, Bayesian structural equation modeling (BSEM), among a sample of 249 French-speaking Swiss children (8-12 years). With BSEM, zero-fixed cross-loadings between latent variables and measures are replaced by approximate zeros, based on informative, small-variance priors. Results indicated that a direct hierarchical CHC-based model with 5 factors plus a general intelligence factor better represented the structure of the WISC-IV than did the 4-factor structure and the higher order models. Because a direct hierarchical CHC model was more adequate, it was concluded that the general factor should be considered as a breadth rather than a superordinate factor. Because it was possible for us to estimate the influence of each of the latent variables on the 15 subtest scores, BSEM allowed improvement of the understanding of the structure of intelligence tests and the clinical interpretation of the subtest scores.
Resumo:
The cytokine BAFF binds to the receptors TACI, BCMA, and BAFF-R on B cells, whereas APRIL binds to TACI and BCMA only. The signaling properties of soluble trimeric BAFF (BAFF 3-mer) were compared with those of higher-order BAFF oligomers. All forms of BAFF bound BAFF-R and TACI, and elicited BAFF-R-dependent signals in primary B cells. In contrast, signaling through TACI in mature B cells or plasmablasts was only achieved by higher-order BAFF and APRIL oligomers, all of which were also po-tent activators of a multimerization-dependent reporter signaling pathway. These results indicate that, although BAFF-R and TACI can provide B cells with similar signals, only BAFF-R, but not TACI, can respond to soluble BAFF 3-mer, which is the main form of BAFF found in circulation. BAFF 60-mer, an efficient TACI agonist, was also detected in plasma of BAFF transgenic and nontransgenic mice and was more than 100-fold more active than BAFF 3-mer for the activation of multimerization-dependent signals. TACI supported survival of activated B cells and plasmablasts in vitro, providing a rational basis to explain the immunoglobulin deficiency reported in TACI-deficient persons.
Resumo:
TWEAK, a TNF family ligand with pleiotropic cellular functions, was originally described as capable of inducing tumor cell death in vitro. TWEAK functions by binding its receptor, Fn14, which is up-regulated on many human solid tumors. Herein, we show that intratumoral administration of TWEAK, delivered either by an adenoviral vector or in an immunoglobulin Fc-fusion form, results in significant inhibition of tumor growth in a breast xenograft model. To exploit the TWEAK-Fn14 pathway as a therapeutic target in oncology, we developed an anti-Fn14 agonistic antibody, BIIB036. Studies described herein show that BIIB036 binds specifically to Fn14 but not other members of the TNF receptor family, induces Fn14 signaling, and promotes tumor cell apoptosis in vitro. In vivo, BIIB036 effectively inhibits growth of tumors in multiple xenograft models, including colon (WiDr), breast (MDA-MB-231), and gastric (NCI-N87) tumors, regardless of tumor cell growth inhibition response observed to BIIB036 in vitro. The anti-tumor activity in these cell lines is not TNF-dependent. Increasing the antigen-binding valency of BIB036 significantly enhances its anti-tumor effect, suggesting the contribution of higher order cross-linking of the Fn14 receptor. Full Fc effector function is required for maximal activity of BIIB036 in vivo, likely due to the cross-linking effect and/or ADCC mediated tumor killing activity. Taken together, the anti-tumor properties of BIIB036 validate Fn14 as a promising target in oncology and demonstrate its potential therapeutic utility in multiple solid tumor indications.
Resumo:
Current measures of ability emotional intelligence (EI)--including the well-known Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT)--suffer from several limitations, including low discriminant validity and questionable construct and incremental validity. We show that the MSCEIT is largely predicted by personality dimensions, general intelligence, and demographics having multiple R's with the MSCEIT branches up to .66; for the general EI factor this relation was even stronger (Multiple R = .76). As concerns the factor structure of the MSCEIT, we found support for four first-order factors, which had differential relations with personality, but no support for a higher-order global EI factor. We discuss implications for employing the MSCEIT, including (a) using the single branches scores rather than the total score, (b) always controlling for personality and general intelligence to ensure unbiased parameter estimates in the EI factors, and (c) correcting for measurement error. Failure to account for these methodological aspects may severely compromise predictive validity testing. We also discuss avenues for the improvement of ability-based tests.
Resumo:
The myosin-V family of molecular motors is known to be under sophisticated regulation, but our knowledge of the roles and regulation of myosin-Vs in cytokinesis is limited. Here, we report that the myosin-V Myo51 affects contractile ring assembly and stability during fission yeast cytokinesis, and is regulated by two novel coiled-coil proteins, Rng8 and Rng9. Both rng8Δ and rng9Δ cells display similar defects as myo51Δ in cytokinesis. Rng8 and Rng9 are required for Myo51's localizations to cytoplasmic puncta, actin cables, and the contractile ring. Myo51 puncta contain multiple Myo51 molecules and walk continuously on actin filaments in rng8(+) cells, whereas Myo51 forms speckles containing only one dimer and does not move efficiently on actin tracks in rng8Δ. Consistently, Myo51 transports artificial cargos efficiently in vivo, and this activity is regulated by Rng8. Purified Rng8 and Rng9 form stable higher-order complexes. Collectively, we propose that Rng8 and Rng9 form oligomers and cluster multiple Myo51 dimers to regulate Myo51 localization and functions.
Resumo:
We present a novel numerical algorithm for the simulation of seismic wave propagation in porous media, which is particularly suitable for the accurate modelling of surface wave-type phenomena. The differential equations of motion are based on Biot's theory of poro-elasticity and solved with a pseudospectral approach using Fourier and Chebyshev methods to compute the spatial derivatives along the horizontal and vertical directions, respectively. The time solver is a splitting algorithm that accounts for the stiffness of the differential equations. Due to the Chebyshev operator the grid spacing in the vertical direction is non-uniform and characterized by a denser spatial sampling in the vicinity of interfaces, which allows for a numerically stable and accurate evaluation of higher order surface wave modes. We stretch the grid in the vertical direction to increase the minimum grid spacing and reduce the computational cost. The free-surface boundary conditions are implemented with a characteristics approach, where the characteristic variables are evaluated at zero viscosity. The same procedure is used to model seismic wave propagation at the interface between a fluid and porous medium. In this case, each medium is represented by a different grid and the two grids are combined through a domain-decomposition method. This wavefield decomposition method accounts for the discontinuity of variables and is crucial for an accurate interface treatment. We simulate seismic wave propagation with open-pore and sealed-pore boundary conditions and verify the validity and accuracy of the algorithm by comparing the numerical simulations to analytical solutions based on zero viscosity obtained with the Cagniard-de Hoop method. Finally, we illustrate the suitability of our algorithm for more complex models of porous media involving viscous pore fluids and strongly heterogeneous distributions of the elastic and hydraulic material properties.
Resumo:
The nuclear matrix, a proteinaceous network believed to be a scaffolding structure determining higher-order organization of chromatin, is usually prepared from intact nuclei by a series of extraction steps. In most cell types investigated the nuclear matrix does not spontaneously resist these treatments but must be stabilized before the application of extracting agents. Incubation of isolated nuclei at 37C or 42C in buffers containing Mg++ has been widely employed as stabilizing agent. We have previously demonstrated that heat treatment induces changes in the distribution of three nuclear scaffold proteins in nuclei prepared in the absence of Mg++ ions. We studied whether different concentrations of Mg++ (2.0-5 mM) affect the spatial distribution of nuclear matrix proteins in nuclei isolated from K562 erythroleukemia cells and stabilized by heat at either 37C or 42C. Five proteins were studied, two of which were RNA metabolism-related proteins (a 105-kD component of splicing complexes and an RNP component), one a 126-kD constituent of a class of nuclear bodies, and two were components of the inner matrix network. The localization of proteins was determined by immunofluorescent staining and confocal scanning laser microscope. Mg++ induced significant changes of antigen distribution even at the lowest concentration employed, and these modifications were enhanced in parallel with increase in the concentration of the divalent cation. The different sensitivity to heat stabilization and Mg++ of these nuclear proteins might reflect a different degree of association with the nuclear scaffold and can be closely related to their functional or structural role.
Resumo:
The human auditory cortex comprises the supratemporal plane and large parts of the temporal and parietal convexities. We have investigated the relevant intrahemispheric cortico-cortical connections using in vivo DSI tractography combined with landmark-based registration, automatic cortical parcellation and whole-brain structural connection matrices in 20 right-handed male subjects. On the supratemporal plane, the pattern of connectivity was related to the architectonically defined early-stage auditory areas. It revealed a three-tier architecture characterized by a cascade of connections from the primary auditory cortex to six adjacent non-primary areas and from there to the superior temporal gyrus. Graph theory-driven analysis confirmed the cascade-like connectivity pattern and demonstrated a strong degree of segregation and hierarchy within early-stage auditory areas. Putative higher-order areas on the temporal and parietal convexities had more widely spread local connectivity and long-range connections with the prefrontal cortex; analysis of optimal community structure revealed five distinct modules in each hemisphere. The pattern of temporo-parieto-frontal connectivity was partially asymmetrical. In conclusion, the human early-stage auditory cortical connectivity, as revealed by in vivo DSI tractography, has strong similarities with that of non-human primates. The modular architecture and hemispheric asymmetry in higher-order regions is compatible with segregated processing streams and lateralization of cognitive functions.
Resumo:
The aim of the present study was to elicit how patients with delusions with religious contents conceptualized or experienced their spirituality and religiousness. Sixty-two patients with present or past religious delusions went through semistructured interviews, which were analyzed using the three coding steps described in the grounded theory. Three major themes were found in religious delusions: ''spiritual identity,'' ''meaning of illness,'' and ''spiritual figures.'' One higher-order concept was found: ''structure of beliefs.'' We identified dynamics that put these personal beliefs into a constant reconstruction through interaction with the world and others (i.e., open dynamics) and conversely structural dynamics that created a complete rupture with the surrounding world and others (i.e., closed structural dynamics); those dynamics may coexist. These analyses may help to identify psychological functions of delusions with religious content and, therefore, to better conceptualize interventions when dealing with it in psychotherapy.
Resumo:
Purpose: Many retinal degenerations result from defective retina-specific gene expressions. Thus, it is important to understand how the expression of a photoreceptor-specific gene is regulated in vivo in order to achieve successful gene therapy. The present study aims to design an AAV2/8 vector that can regulate the transcript level in a physiological manner to replace missing PDE6b in Rd1 and Rd10 mice. In previous studies (Ogieta, et al., 2000), the short 5' flanking sequence of the human PDE6b gene (350 bp) was shown to be photoreceptor-specific in transgenic mice. However, the efficiency and specificity of the 5' flanking region of the human PDE6b was not investigated in the context of gene therapy during retinal degeneration. In this study, two different sequences of the 5' flanking region of the human PDE6b gene were studied as promoter elements and their expression will be tested in wild type and diseased retinas (Rd 10 mice).Methods: Two 5' flanking fragments of the human PDE6b gene: (-93 to +53 (150 bp) and -297 to +53 (350 bp)) were cloned in different plasmids in order to check their expression in vitro and in vivo by constructing an AAV2/8 vector. These elements drove the activity of either luciferase (pGL3 plasmids) or EGFP. jetPEI transfection in Y 79 cells was used to evaluate gene expression through luciferase activity. Constructs encoding EGFP under the control of the two promoters were performed in AAV2.1-93 (or 297)-EGFP plasmids to produce AAV2/8 vectors.Results: When pGL3-93 (150 bp) or pGL3-297 (350 bp) were transfected in the Y-79 cells, the smaller fragment (150 bp) showed higher gene expression compared to the 350 bp element and to the SV40 control, as previously reported. The 350 bp drove similar levels of expression when compared to the SV40 promoter. In view of these results, the fragments (150 bp or 350 bp) were integrated into the AAV2.1-EGFP plasmid to produce AAV2/8 vector, and we are currently evaluating the efficiency and specificity of the produced constructs in vivo in normal and diseased retinas.Conclusions: Comparisons of these vectors with vectors bearing ubiquitous promoters should reveal which construct is the most suitable to drive efficient and specific gene expression in diseased retinas in order to restore a normal function on the long term.
Resumo:
In this paper we propose a stabilized conforming finite volume element method for the Stokes equations. On stating the convergence of the method, optimal a priori error estimates in different norms are obtained by establishing the adequate connection between the finite volume and stabilized finite element formulations. A superconvergence result is also derived by using a postprocessing projection method. In particular, the stabilization of the continuous lowest equal order pair finite volume element discretization is achieved by enriching the velocity space with local functions that do not necessarily vanish on the element boundaries. Finally, some numerical experiments that confirm the predicted behavior of the method are provided.
Resumo:
Several quartz crystals from three different Alpine vein localities and of known petrologic setting and evolution have been examined for possible elemental sector zoning in order to help to constrain the mechanisms of such trace element incorporation. Using different in situ techniques (EMPA, LA-ICPMS, SIMS, FTIR-spectroscopy), it was established that Al and Li concentrations can exceed several hundreds of ppma for distinct growth zones within crystals formed at temperatures of about 300 degrees C or less and that also display patterns of cyclic growth when examined with cathodoluminescence. In contrast, crystals formed at temperatures closer to 400 degrees C and without visible cyclic growth have low concentrations of Al and Li as well as other trace elements. Al and Li contents are correlated along profiles measured within the crystals and in general their proportion does not change along the profiles. No relationships were found between Al, Na, and K, and germanium has a qualitative relationship with Al. FTIR spectra also show OH(-) absorption bands within the quartz, with higher amplitudes in zones rich in Al and Li. Sector zoning is present. It is most pronounced between prismatic and rhombohedral faces of the same growth zone, but also between the rhombohedral faces of r and z, which contain different amounts of trace elements. The sector zoning is also expressed by changes in the Li/Al ratio, with higher ratios in 17 compared to r faces. It is concluded that the incorporation of trace elements into hydrothermal quartz from Alpine veins is influenced by growth mechanisms and surface-structures of the growing quartz crystals, the influence of which may change as a function of temperature, pH, as well as the chemical composition of the fluid.