29 resultados para half-frequency bunching method
Resumo:
Measurement of total energy expenditure may be crucial to an understanding of the relation between physical activity and disease and in order to frame public health intervention. To devise a self-administered physical activity frequency questionnaire (PAFQ), the following data-based approach was used. A 24-hour recall was administered to a random sample of 919 adult residents of Geneva, Switzerland. The data obtained were used to establish the list of activities (and their median duration) that contributed to 95% of the energy expended, separately for men and women. Activities that were trivial for the whole sample but that contributed to > or = 10% of an individual's energy expenditure were also selected. The final PAFQ lists 70 activities or group of activities with their typical duration. About 20 minutes are required for respondents to indicate the number of days and the number of hours per day that they performed each activity. The PAFQ method was validated against a heart rate monitor, a more objective method. The total energy estimated by the PAFQ in 41 volunteers correlated well (r = 0.76) with estimates using a heart rate monitor. The authors conclude that the design of their self-administered physical activity frequency questionnaire based on data from 24-hour recall appeared to accurately estimate energy expenditure.
Resumo:
Introduction: Prior repeated-sprints (6) has become an interesting method to resolve the debate surrounding the principal factors that limits the oxygen uptake (V'O2) kinetics at the onset of exercise [i.e., muscle O2 delivery (5) or metabolic inertia (3)]. The aim of this study was to compare the effects of two repeated-sprints sets of 6x6s separated by different recovery duration between the sprints on V'O2 and muscular de-oxygenation [HHb] kinetics during a subsequent heavy-intensity exercise. Methods: 10 male subjects performed a 6-min constant-load cycling test (T50) at intensity corresponding to half of the difference between V'O2max and the ventilatory threshold. Then, they performed two repeated-sprints sets of 6x6s all-out separated by different recovery duration between the sprints (S1:30s and S2:3min) followed, after 7-min-recovery, by the T50 (S1T50 and S2T50, respectively). V'O2, [HHb] of the vastus lateralis (VL) and surface electromyography activity [i.e., root-mean-square (RMS) and the median frequency of the power density spectrum (MDF)] from VL and vastus medialis (VM) were recorded throughout T50. Models using a bi-exponential function for the overall T50 and a mono-exponential for the first 90s of T50 were used to define V'O2 and [HHb] kinetics respectively. Results: V'O2 mean value was higher in S1 (2.9±0.3l.min-1) than in S2 (1.2±0.3l.min-1); (p<0.001). The peripheral blood flow was increased after sprints as attested by a higher basal heart rate (HRbaseline) (S1T50: +22%; S2T50: +17%; p≤0.008). Time delay [HHb] was shorter for S1T50 and S2T50 than for T50 (-22% for both; p≤0.007) whereas the mean response time of V'O2 was accelerated only after S1 (S1T50: 32.3±2.5s; S2T50: 34.4±2.6s; T50: 35.7±5.4s; p=0.031). There were no significant differences in RMS between the three conditions (p>0.05). MDF of VM was higher during the first 3-min in S1T50 than in T50 (+6%; p≤0.05). Conclusion: The study show that V'O2 kinetics was speeded by prior repeated-sprints with a short (30s) but not a long (3min) inter-sprints-recovery even though the [HHb] kinetics was accelerated and the peripheral blood flow was enhanced after both sprints. S1, inducing a greater PCr depletion (1) and change in the pattern of the fibres recruitment (increase in MDF) compared with S2, may decrease metabolic inertia (2), stimulate the oxidative phosphorylation activation (4) and accelerate V'O2 kinetics at the beginning of the subsequent high-intensity exercise.
Resumo:
Introduction: Prior repeated-sprints (6) has become an interesting method to resolve the debate surrounding the principal factors that limits the oxygen uptake (V'O2) kinetics at the onset of exercise [i.e., muscle O2 delivery (5) or metabolic inertia (3)]. The aim of this study was to compare the effects of two repeated-sprints sets of 6x6s separated by different recovery duration between the sprints on V'O2 and muscular de-oxygenation [HHb] kinetics during a subsequent heavy-intensity exercise. Methods: 10 male subjects performed a 6-min constant-load cycling test (T50) at intensity corresponding to half of the difference between V'O2max and the ventilatory threshold. Then, they performed two repeated-sprints sets of 6x6s all-out separated by different recovery duration between the sprints (S1:30s and S2:3min) followed, after 7-min-recovery, by the T50 (S1T50 and S2T50, respectively). V'O2, [HHb] of the vastus lateralis (VL) and surface electromyography activity [i.e., root-mean-square (RMS) and the median frequency of the power density spectrum (MDF)] from VL and vastus medialis (VM) were recorded throughout T50. Models using a bi-exponential function for the overall T50 and a mono-exponential for the first 90s of T50 were used to define V'O2 and [HHb] kinetics respectively. Results: V'O2 mean value was higher in S1 (2.9±0.3l.min-1) than in S2 (1.2±0.3l.min-1); (p<0.001). The peripheral blood flow was increased after sprints as attested by a higher basal heart rate (HRbaseline) (S1T50: +22%; S2T50: +17%; p≤0.008). Time delay [HHb] was shorter for S1T50 and S2T50 than for T50 (-22% for both; p≤0.007) whereas the mean response time of V'O2 was accelerated only after S1 (S1T50: 32.3±2.5s; S2T50: 34.4±2.6s; T50: 35.7±5.4s; p=0.031). There were no significant differences in RMS between the three conditions (p>0.05). MDF of VM was higher during the first 3-min in S1T50 than in T50 (+6%; p≤0.05). Conclusion: The study show that V'O2 kinetics was speeded by prior repeated-sprints with a short (30s) but not a long (3min) inter-sprints-recovery even though the [HHb] kinetics was accelerated and the peripheral blood flow was enhanced after both sprints. S1, inducing a greater PCr depletion (1) and change in the pattern of the fibres recruitment (increase in MDF) compared with S2, may decrease metabolic inertia (2), stimulate the oxidative phosphorylation activation (4) and accelerate V'O2 kinetics at the beginning of the subsequent high-intensity exercise.
Resumo:
Whole-body vibration (WBV) is a new exercise method, with good acceptance among sedentary subjects. The metabolic response to WBV has not been well documented. Three groups of male subjects, inactive (SED), endurance (END) and strength trained (SPRINT) underwent a session of side-alternating WBV composed of three 3-min exercises (isometric half-squat, dynamic squat, dynamic squat with added load), and repeated at three frequencies (20, 26 and 32 Hz). VO(2), heart rate and Borg scale were monitored. Twenty-seven healthy young subjects (10 SED, 8 SPRINT and 9 END) were included. When expressed in % of their maximal value recorded in a treadmill test, both the peak oxygen consumption (VO(2)) and heart rate (HR) attained during WBV were greatest in the SED, compared to the other two groups (VO(2): 59.3 % in SED vs 50.8 % in SPRINT and 48.0 % in END, p<0.01; HR 82.7 % in SED vs 80.4 % in SPRINT and 72.4 % in END, p<0.05). In conclusions, the heart rate and metabolic response to WBV differs according to fitness level and type, exercise type and vibration frequency. In SED, WBV can elicit sufficient cardiovascular response to benefit overall fitness and thus be a potentially useful modality for the reduction of cardiovascular risk.
Resumo:
We present a Bayesian approach for estimating the relative frequencies of multi-single nucleotide polymorphism (SNP) haplotypes in populations of the malaria parasite Plasmodium falciparum by using microarray SNP data from human blood samples. Each sample comes from a malaria patient and contains one or several parasite clones that may genetically differ. Samples containing multiple parasite clones with different genetic markers pose a special challenge. The situation is comparable with a polyploid organism. The data from each blood sample indicates whether the parasites in the blood carry a mutant or a wildtype allele at various selected genomic positions. If both mutant and wildtype alleles are detected at a given position in a multiply infected sample, the data indicates the presence of both alleles, but the ratio is unknown. Thus, the data only partially reveals which specific combinations of genetic markers (i.e. haplotypes across the examined SNPs) occur in distinct parasite clones. In addition, SNP data may contain errors at non-negligible rates. We use a multinomial mixture model with partially missing observations to represent this data and a Markov chain Monte Carlo method to estimate the haplotype frequencies in a population. Our approach addresses both challenges, multiple infections and data errors.
Resumo:
At seismic frequencies, wave-induced fluid flow is a major cause of P-wave attenuation in partially saturated porous rocks. Attenuation is of great importance for the oil industry in the interpretation of seismic field data. Here, the effects on P-wave attenuation resulting from changes in oil saturation are studied for media with coexisting water, oil, and gas. For that, creep experiments are numerically simulated by solving Biot's equations for consolidation of poroelastic media with the finite-element method. The experiments yield time-dependent stress?strain relations that are used to calculate the complex P-wave modulus from which frequency-dependent P-wave attenuation is determined. The models are layered media with periodically alternating triplets of layers. Models consisting of triplets of layers having randomly varying layer thicknesses are also considered. The layers in each triplet are fully saturated with water, oil, and gas. The layer saturated with water has lower porosity and permeability than the layers saturated with oil and gas. These models represent hydrocarbon reservoirs in which water is the wetting fluid preferentially saturating regions of lower porosity. The results from the numerical experiments showed that increasing oil saturation, connected to a decrease in gas saturation, resulted in a significant increase of attenuation at low frequencies (lower than 2 Hz). Furthermore, replacing the oil with water resulted in a distinguishable behavior of the frequency-dependent attenuation. These results imply that, according to the physical mechanism of wave-induced fluid flow, frequency-dependent attenuation in media saturated with water, oil, and gas is a potential indicator of oil saturation.
Resumo:
OBJECTIVE: Before a patient can be connected to a mechanical ventilator, the controls of the apparatus need to be set up appropriately. Today, this is done by the intensive care professional. With the advent of closed loop controlled mechanical ventilation, methods will be needed to select appropriate start up settings automatically. The objective of our study was to test such a computerized method which could eventually be used as a start-up procedure (first 5-10 minutes of ventilation) for closed-loop controlled ventilation. DESIGN: Prospective Study. SETTINGS: ICU's in two adult and one children's hospital. PATIENTS: 25 critically ill adult patients (age > or = 15 y) and 17 critically ill children selected at random were studied. INTERVENTIONS: To stimulate 'initial connection', the patients were disconnected from their ventilator and transiently connected to a modified Hamilton AMADEUS ventilator for maximally one minute. During that time they were ventilated with a fixed and standardized breath pattern (Test Breaths) based on pressure controlled synchronized intermittent mandatory ventilation (PCSIMV). MEASUREMENTS AND MAIN RESULTS: Measurements of airway flow, airway pressure and instantaneous CO2 concentration using a mainstream CO2 analyzer were made at the mouth during application of the Test-Breaths. Test-Breaths were analyzed in terms of tidal volume, expiratory time constant and series dead space. Using this data an initial ventilation pattern consisting of respiratory frequency and tidal volume was calculated. This ventilation pattern was compared to the one measured prior to the onset of the study using a two-tailed paired t-test. Additionally, it was compared to a conventional method for setting up ventilators. The computer-proposed ventilation pattern did not differ significantly from the actual pattern (p > 0.05), while the conventional method did. However the scatter was large and in 6 cases deviations in the minute ventilation of more than 50% were observed. CONCLUSIONS: The analysis of standardized Test Breaths allows automatic determination of an initial ventilation pattern for intubated ICU patients. While this pattern does not seem to be superior to the one chosen by the conventional method, it is derived fully automatically and without need for manual patient data entry such as weight or height. This makes the method potentially useful as a start up procedure for closed-loop controlled ventilation.
Resumo:
In social Hymenoptera (ants, bees, and wasps), the number of males that mate with the same queen affects social and genetic organization of the colony. However, the selective forces leading to single mating in certain conditions and multiple mating in others remain enigmatic. In this study, I investigated whether queens of the wood ant Formica paralugubris adopting different dispersal strategies varied in their mating frequency (the number of males with whom they mated). The frequency of multiple mating was determined by using microsatellite markers to genotype the sperm stored in the spermatheca of queens, and the validity of this method was confirmed by analysing mother-offspring combinations obtained from experimental single-queen colonies. Dispersing queens, which may found new colonies, did not mate with more males than queens that stayed within polygynous colonies, where the presence of numerous reproductive individuals ensured a high level of genetic diversity. Hence, this study provides no support to the hypotheses that multiple mating is beneficial because it increases genetic variability within colonies. Most of the F. paralugubris queens mated with a single male, whatever their dispersal strategy and life history. Moreover, multiple mating had little effect on colony genetic structure: the effective mating frequency was 1.11 when calculated from within-brood relatedness, and 1.13 when calculated from the number of mates detected in the sperm. Hence, occasional multiple mating by F. paralugubris queens may have no adaptive significance.
Resumo:
Question: When multiple observers record the same spatial units of alpine vegetation, how much variation is there in the records and what are the consequences of this variation for monitoring schemes to detect change? Location: One test summit in Switzerland (Alps) and one test summit in Scotland (Cairngorm Mountains). Method: Eight observers used the GLORIA protocols for species composition and visual cover estimates in percent on large summit sections (>100 m2) and species composition and frequency in nested quadrats (1 m2). Results: The multiple records from the same spatial unit for species composition and species cover showed considerable variation in the two countries. Estimates of pseudoturnover of composition and coefficients of variation of cover estimates for vascular plant species in 1m x 1m quadrats showed less variation than in previously published reports whereas our results in larger sections were broadly in line with previous reports. In Scotland, estimates for bryophytes and lichens were more variable than for vascular plants. Conclusions: Statistical power calculations indicated that, unless large numbers of plots were used, changes in cover or frequency were only likely to be detected for abundant species (exceeding 10% cover) or if relative changes were large (50% or more). Lower variation could be reached with the point methods and with larger numbers of small plots. However, as summits often strongly differ from each other, supplementary summits cannot be considered as a way of increasing statistical power without introducing a supplementary component of variance into the analysis and hence the power calculations.
Resumo:
The relationship between electrophysiological and functional magnetic resonance imaging (fMRI) signals remains poorly understood. To date, studies have required invasive methods and have been limited to single functional regions and thus cannot account for possible variations across brain regions. Here we present a method that uses fMRI data and singe-trial electroencephalography (EEG) analyses to assess the spatial and spectral dependencies between the blood-oxygenation-level-dependent (BOLD) responses and the noninvasively estimated local field potentials (eLFPs) over a wide range of frequencies (0-256 Hz) throughout the entire brain volume. This method was applied in a study where human subjects completed separate fMRI and EEG sessions while performing a passive visual task. Intracranial LFPs were estimated from the scalp-recorded data using the ELECTRA source model. We compared statistical images from BOLD signals with statistical images of each frequency of the eLFPs. In agreement with previous studies in animals, we found a significant correspondence between LFP and BOLD statistical images in the gamma band (44-78 Hz) within primary visual cortices. In addition, significant correspondence was observed at low frequencies (<14 Hz) and also at very high frequencies (>100 Hz). Effects within extrastriate visual areas showed a different correspondence that not only included those frequency ranges observed in primary cortices but also additional frequencies. Results therefore suggest that the relationship between electrophysiological and hemodynamic signals thus might vary both as a function of frequency and anatomical region.
Resumo:
Introduction: Prior repeated-sprints (6) has become an interesting method to resolve the debate surrounding the principal factors that limits the oxygen uptake (V'O2) kinetics at the onset of exercise [i.e., muscle O2 delivery (5) or metabolic inertia (3)]. The aim of this study was to compare the effects of two repeated-sprints sets of 6x6s separated by different recovery duration between the sprints on V'O2 and muscular de-oxygenation [HHb] kinetics during a subsequent heavy-intensity exercise. Methods: 10 male subjects performed a 6-min constant-load cycling test (T50) at intensity corresponding to half of the difference between V'O2max and the ventilatory threshold. Then, they performed two repeated-sprints sets of 6x6s all-out separated by different recovery duration between the sprints (S1:30s and S2:3min) followed, after 7-min-recovery, by the T50 (S1T50 and S2T50, respectively). V'O2, [HHb] of the vastus lateralis (VL) and surface electromyography activity [i.e., root-mean-square (RMS) and the median frequency of the power density spectrum (MDF)] from VL and vastus medialis (VM) were recorded throughout T50. Models using a bi-exponential function for the overall T50 and a mono-exponential for the first 90s of T50 were used to define V'O2 and [HHb] kinetics respectively. Results: V'O2 mean value was higher in S1 (2.9±0.3l.min-1) than in S2 (1.2±0.3l.min-1); (p<0.001). The peripheral blood flow was increased after sprints as attested by a higher basal heart rate (HRbaseline) (S1T50: +22%; S2T50: +17%; p≤0.008). Time delay [HHb] was shorter for S1T50 and S2T50 than for T50 (-22% for both; p≤0.007) whereas the mean response time of V'O2 was accelerated only after S1 (S1T50: 32.3±2.5s; S2T50: 34.4±2.6s; T50: 35.7±5.4s; p=0.031). There were no significant differences in RMS between the three conditions (p>0.05). MDF of VM was higher during the first 3-min in S1T50 than in T50 (+6%; p≤0.05). Conclusion: The study show that V'O2 kinetics was speeded by prior repeated-sprints with a short (30s) but not a long (3min) inter-sprints-recovery even though the [HHb] kinetics was accelerated and the peripheral blood flow was enhanced after both sprints. S1, inducing a greater PCr depletion (1) and change in the pattern of the fibres recruitment (increase in MDF) compared with S2, may decrease metabolic inertia (2), stimulate the oxidative phosphorylation activation (4) and accelerate V'O2 kinetics at the beginning of the subsequent high-intensity exercise.
Resumo:
Introduction: Prior repeated-sprints (6) has become an interesting method to resolve the debate surrounding the principal factors that limits the oxygen uptake (V'O2) kinetics at the onset of exercise [i.e., muscle O2 delivery (5) or metabolic inertia (3)]. The aim of this study was to compare the effects of two repeated-sprints sets of 6x6s separated by different recovery duration between the sprints on V'O2 and muscular de-oxygenation [HHb] kinetics during a subsequent heavy-intensity exercise. Methods: 10 male subjects performed a 6-min constant-load cycling test (T50) at intensity corresponding to half of the difference between V'O2max and the ventilatory threshold. Then, they performed two repeated-sprints sets of 6x6s all-out separated by different recovery duration between the sprints (S1:30s and S2:3min) followed, after 7-min-recovery, by the T50 (S1T50 and S2T50, respectively). V'O2, [HHb] of the vastus lateralis (VL) and surface electromyography activity [i.e., root-mean-square (RMS) and the median frequency of the power density spectrum (MDF)] from VL and vastus medialis (VM) were recorded throughout T50. Models using a bi-exponential function for the overall T50 and a mono-exponential for the first 90s of T50 were used to define V'O2 and [HHb] kinetics respectively. Results: V'O2 mean value was higher in S1 (2.9±0.3l.min-1) than in S2 (1.2±0.3l.min-1); (p<0.001). The peripheral blood flow was increased after sprints as attested by a higher basal heart rate (HRbaseline) (S1T50: +22%; S2T50: +17%; p≤0.008). Time delay [HHb] was shorter for S1T50 and S2T50 than for T50 (-22% for both; p≤0.007) whereas the mean response time of V'O2 was accelerated only after S1 (S1T50: 32.3±2.5s; S2T50: 34.4±2.6s; T50: 35.7±5.4s; p=0.031). There were no significant differences in RMS between the three conditions (p>0.05). MDF of VM was higher during the first 3-min in S1T50 than in T50 (+6%; p≤0.05). Conclusion: The study show that V'O2 kinetics was speeded by prior repeated-sprints with a short (30s) but not a long (3min) inter-sprints-recovery even though the [HHb] kinetics was accelerated and the peripheral blood flow was enhanced after both sprints. S1, inducing a greater PCr depletion (1) and change in the pattern of the fibres recruitment (increase in MDF) compared with S2, may decrease metabolic inertia (2), stimulate the oxidative phosphorylation activation (4) and accelerate V'O2 kinetics at the beginning of the subsequent high-intensity exercise.
Resumo:
AIM: The study examined the effects of an oral acute administration of the beta2-agonist salbutamol (Sal) (6 mg) vs. placebo on muscle strength and fatigability in 12 non-asthmatic recreational male athletes in a randomized double-blind protocol. METHODS: Contractile properties of the right quadriceps muscle were measured during electrical stimulations, i.e. twitch, 1-s pulse trains at 20 (P(20) ) and 80 Hz (P(80) ) and during maximal voluntary isometric contraction (MVIC) before (PRE) and after (POST) a fatigue-producing protocol set by an electromyostimulation (30 contractions, frequency: 75 Hz, on-off ratio: 6.25-20s). In addition, the level of muscle voluntary activation was measured. RESULTS: In PRE and POST conditions, the peak torque (PT) of twitch, P(80) and MVIC were not modified by the treatment. The PT in POST P(20) was slightly, although not significantly, less affected by fatigue in Sal compared with placebo condition. Moreover, twitch half-relaxation time at PRE was smaller under Sal than under placebo (P < 0.05). No significant changes in the degree of voluntary activation were observed with Sal treatment in PRE or POST condition. CONCLUSION: Although these findings did not exclude completely an effect of Sal on peripheral factors of human skeletal muscle, oral acute administration of the beta2-agonist Sal seems to be without any relevant ergogenic effect on muscle contractility and fatigability in non-asthmatic recreational male athletes.
Resumo:
Introduction: Neuronal oscillations have been the focus of increasing interest in the neuroscientific community, in part because they have been considered as a possible integrating mechanism through which internal states can influence stimulus processing in a top-down way (Engel et al., 2001). Moreover, increasing evidence indicates that oscillations in different frequency bands interact with one other through coupling mechanisms (Jensen and Colgin, 2007). The existence and the importance of these cross-frequency couplings during various tasks have been verified by recent studies (Canolty et al., 2006; Lakatos et al., 2007). In this study, we measure the strength and directionality of two types of couplings - phase-amplitude couplings and phase-phase couplings - between various bands in EEG data recorded during an illusory contour experiment that were identified using a recently-proposed adaptive frequency tracking algorithm (Van Zaen et al., 2010). Methods: The data used in this study have been taken from a previously published study examining the spatiotemporal mechanisms of illusory contour processing (Murray et al., 2002). The EEG in the present study were from a subset of nine subjects. Each stimulus was composed of 'pac-man' inducers presented in two orientations: IC, when an illusory contour was present, and NC, when no contour could be detected. The signals recorded by the electrodes P2, P4, P6, PO4 and PO6 were averaged, and filtered into the following bands: 4-8Hz, 8-12Hz, 15-25Hz, 35-45Hz, 45-55Hz, 55-65Hz and 65-75Hz. An adaptive frequency tracking algorithm (Van Zaen et al., 2010) was then applied in each band in order to extract the main oscillation and estimate its frequency. This additional step ensures that clean phase information is obtained when taking the Hilbert transform. The frequency estimated by the tracker was averaged over sliding windows and then used to compare the two conditions. Two types of cross-frequency couplings were considered: phase-amplitude couplings and phase-phase couplings. Both types were measured with the phase locking value (PLV, Lachaux et al., 1999) over sliding windows. The phase-amplitude couplings were computed with the phase of the low frequency oscillation and the phase of the amplitude of the high frequency one. Different coupling coefficients were used when measuring phase-phase couplings in order to estimate different m:n synchronizations (4:3, 3:2, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1 and 9:1) and to take into account the frequency differences across bands. Moreover, the direction of coupling was estimated with a directionality index (Bahraminasab et al., 2008). Finally, the two conditions IC and NC were compared with ANOVAs with 'subject' as a random effect and 'condition' as a fixed effect. Before computing the statistical tests, the PLV values were transformed into approximately normal variables (Penny et al., 2008). Results: When comparing the mean estimated frequency across conditions, a significant difference was found only in the 4-8Hz band, such that the frequency within this band was significantly higher for IC than NC stimuli starting at ~250ms post-stimulus onset (Fig. 1; solid line shows IC and dashed line NC). Significant differences in phase-amplitude couplings were obtained only when the 4-8 Hz band was taken as the low frequency band. Moreover, in all significant situations, the coupling strength is higher for the NC than IC condition. An example of significant difference between conditions is shown in Fig. 2 for the phase-amplitude coupling between the 4-8Hz and 55-65Hz bands (p-value in top panel and mean PLV values in the bottom panel). A decrease in coupling strength was observed shortly after stimulus onset for both conditions and was greater for the condition IC. This phenomenon was observed with all other frequency bands. The results obtained for the phase-phase couplings were more complex. As for the phase-amplitude couplings, all significant differences were obtained when the 4-8Hz band was considered as the low frequency band. The stimulus condition exhibiting the higher coupling strength depended on the ratio of the coupling coefficients. When this ratio was small, the IC condition exhibited the higher phase-phase coupling strength. When this ratio was large, the NC condition exhibited the higher coupling strength. Fig. 3 shows the phase-phase couplings between the 4-8Hz and 35-45Hz bands for the coupling coefficient 6:1, and the coupling strength was significantly higher for the IC than NC condition. By contrast, for the coupling coefficient 9:1 the NC condition gave the higher coupling strength (Fig. 4). Control analyses verified that it is not a consequence of the frequency difference between the two conditions in the 4-8Hz band. The directionality measures indicated a transfer of information from the low frequency components towards the high frequency ones. Conclusions: Adaptive tracking is a feasible method for EEG analyses, revealing information both about stimulus-related differences and coupling patterns across frequencies. Theta oscillations play a central role in illusory shape processing and more generally in visual processing. The presence vs. absence of illusory shapes was paralleled by faster theta oscillations. Phase-amplitude couplings were decreased more for IC than NC and might be due to a resetting mechanism. The complex patterns in phase-phase coupling between theta and beta/gamma suggest that the contribution of these oscillations to visual binding and stimulus processing are not as straightforward as conventionally held. Causality analyses further suggest that theta oscillations drive beta/gamma oscillations (see also Schroeder and Lakatos, 2009). The present findings highlight the need for applying more sophisticated signal analyses in order to establish a fuller understanding of the functional role of neural oscillations.