43 resultados para generalized variance
Resumo:
To report the case of a child with short absences and occasional myoclonias since infancy who was first diagnosed with an idiopathic generalized epilepsy, but was documented at follow-up to have a mild phenotype of glucose transporter type 1 deficiency syndrome. Unlike other reported cases of Glut-1 DS and epilepsy, this child had a normal development as well as a normal head growth and neurological examination. Early onset of seizures and later recognized episodes of mild confusion before meals together with persistent atypical EEG features and unexpected learning difficulties led to the diagnosis. Seizure control and neuropsychological improvements were obtained with a ketogenic diet.
Resumo:
Aim This study used data from temperate forest communities to assess: (1) five different stepwise selection methods with generalized additive models, (2) the effect of weighting absences to ensure a prevalence of 0.5, (3) the effect of limiting absences beyond the environmental envelope defined by presences, (4) four different methods for incorporating spatial autocorrelation, and (5) the effect of integrating an interaction factor defined by a regression tree on the residuals of an initial environmental model. Location State of Vaud, western Switzerland. Methods Generalized additive models (GAMs) were fitted using the grasp package (generalized regression analysis and spatial predictions, http://www.cscf.ch/grasp). Results Model selection based on cross-validation appeared to be the best compromise between model stability and performance (parsimony) among the five methods tested. Weighting absences returned models that perform better than models fitted with the original sample prevalence. This appeared to be mainly due to the impact of very low prevalence values on evaluation statistics. Removing zeroes beyond the range of presences on main environmental gradients changed the set of selected predictors, and potentially their response curve shape. Moreover, removing zeroes slightly improved model performance and stability when compared with the baseline model on the same data set. Incorporating a spatial trend predictor improved model performance and stability significantly. Even better models were obtained when including local spatial autocorrelation. A novel approach to include interactions proved to be an efficient way to account for interactions between all predictors at once. Main conclusions Models and spatial predictions of 18 forest communities were significantly improved by using either: (1) cross-validation as a model selection method, (2) weighted absences, (3) limited absences, (4) predictors accounting for spatial autocorrelation, or (5) a factor variable accounting for interactions between all predictors. The final choice of model strategy should depend on the nature of the available data and the specific study aims. Statistical evaluation is useful in searching for the best modelling practice. However, one should not neglect to consider the shapes and interpretability of response curves, as well as the resulting spatial predictions in the final assessment.
Resumo:
The population-genetic consequences of monogamy and male philopatry (a rare breeding system in mammals) were investigated using microsatellite markers in the semisocial and anthropophilic shrew Crocidura russula. A hierarchical sampling design over a 16-km geographical transect revealed a large genetic diversity (h = 0.813) with significant differentiation among subpopulations (F-ST = 5-6%), which suggests an exchange of 4.4 migrants per generation. Demic effective-size estimates were very high, due both to this limited gene inflow and to the inner structure of subpopulations. These were made of 13-20 smaller units (breeding groups), comprising an estimate of four breeding pairs each. Members of the same breeding groups displayed significant coancestries (F-LS = 9-10%), which was essentially due to strong male kinship: syntopic males were on average related at the half-sib level. Female dispersal among breeding groups was not complete (similar to 39%), and insufficient to prevent inbreeding. From our results, the breeding strategy of C. russula seems less efficient than classical mammalian systems (polygyny and male dispersal) in disentangling coancestry from inbreeding, but more so in retaining genetic variance.
Resumo:
Analysis of variance is commonly used in morphometry in order to ascertain differences in parameters between several populations. Failure to detect significant differences between populations (type II error) may be due to suboptimal sampling and lead to erroneous conclusions; the concept of statistical power allows one to avoid such failures by means of an adequate sampling. Several examples are given in the morphometry of the nervous system, showing the use of the power of a hierarchical analysis of variance test for the choice of appropriate sample and subsample sizes. In the first case chosen, neuronal densities in the human visual cortex, we find the number of observations to be of little effect. For dendritic spine densities in the visual cortex of mice and humans, the effect is somewhat larger. A substantial effect is shown in our last example, dendritic segmental lengths in monkey lateral geniculate nucleus. It is in the nature of the hierarchical model that sample size is always more important than subsample size. The relative weight to be attributed to subsample size thus depends on the relative magnitude of the between observations variance compared to the between individuals variance.
Resumo:
The most widely used formula for estimating glomerular filtration rate (eGFR) in children is the Schwartz formula. It was revised in 2009 using iohexol clearances with measured GFR (mGFR) ranging between 15 and 75 ml/min × 1.73 m(2). Here we assessed the accuracy of the Schwartz formula using the inulin clearance (iGFR) method to evaluate its accuracy for children with less renal impairment comparing 551 iGFRs of 392 children with their Schwartz eGFRs. Serum creatinine was measured using the compensated Jaffe method. In order to find the best relationship between iGFR and eGFR, a linear quadratic regression model was fitted and a more accurate formula was derived. This quadratic formula was: 0.68 × (Height (cm)/serum creatinine (mg/dl))-0.0008 × (height (cm)/serum creatinine (mg/dl))(2)+0.48 × age (years)-(21.53 in males or 25.68 in females). This formula was validated using a split-half cross-validation technique and also externally validated with a new cohort of 127 children. Results show that the Schwartz formula is accurate until a height (Ht)/serum creatinine value of 251, corresponding to an iGFR of 103 ml/min × 1.73 m(2), but significantly unreliable for higher values. For an accuracy of 20 percent, the quadratic formula was significantly better than the Schwartz formula for all patients and for patients with a Ht/serum creatinine of 251 or greater. Thus, the new quadratic formula could replace the revised Schwartz formula, which is accurate for children with moderate renal failure but not for those with less renal impairment or hyperfiltration.
Resumo:
The cichlids of East Africa are renowned as one of the most spectacular examples of adaptive radiation. They provide a unique opportunity to investigate the relationships between ecology, morphological diversity, and phylogeny in producing such remarkable diversity. Nevertheless, the parameters of the adaptive radiations of these fish have not been satisfactorily quantified yet. Lake Tanganyika possesses all of the major lineages of East African cichlid fish, so by using geometric morphometrics and comparative analyses of ecology and morphology, in an explicitly phylogenetic context, we quantify the role of ecology in driving adaptive speciation. We used geometric morphometric methods to describe the body shape of over 1000 specimens of East African cichlid fish, with a focus on the Lake Tanganyika species assemblage, which is composed of more than 200 endemic species. The main differences in shape concern the length of the whole body and the relative sizes of the head and caudal peduncle. We investigated the influence of phylogeny on similarity of shape using both distance-based and variance partitioning methods, finding that phylogenetic inertia exerts little influence on overall body shape. Therefore, we quantified the relative effect of major ecological traits on shape using phylogenetic generalized least squares and disparity analyses. These analyses conclude that body shape is most strongly predicted by feeding preferences (i.e., trophic niches) and the water depths at which species occur. Furthermore, the morphological disparity within tribes indicates that even though the morphological diversification associated with explosive speciation has happened in only a few tribes of the Tanganyikan assemblage, the potential to evolve diverse morphologies exists in all tribes. Quantitative data support the existence of extensive parallelism in several independent adaptive radiations in Lake Tanganyika. Notably, Tanganyikan mouthbrooders belonging to the C-lineage and the substrate spawning Lamprologini have evolved a multitude of different shapes from elongated and Lamprologus-like hypothetical ancestors. Together, these data demonstrate strong support for the adaptive character of East African cichlid radiations.
Resumo:
Knowledge of the quantitative genetics of resistance to parasitism is key to appraise host evolutionary responses to parasite selection. Here, we studied effects of common origin (i.e. genetic and pre-hatching parental effects) and common rearing environment (i.e. post-hatching parental effects and other environment effects) on variance in ectoparasite load in nestling Alpine swifts (Apus melba). This colonial bird is intensely parasitized by blood sucking louse-flies that impair nestling development and survival. By cross-fostering half of the hatchlings between pairs of nests, we show strong significant effect of common rearing environment on variance (90.7% in 2002 and 90.9% in 2003) in the number of louse-flies per nestling and no significant effect of common origin on variance in the number of louse-flies per nestling. In contrast, significant effects of common origin were found for all the nestling morphological traits (i.e. body mass, wing length, tail length, fork length and sternum length) under investigation. Hence, our study suggests that genetic and pre-hatching parental effects play little role in the distribution of parasites among nestling Alpine swifts, and thus that nestlings have only limited scope for evolutionary responses against parasites. Our results highlight the need to take into consideration environmental factors, including the evolution of post-hatching parental effects such as nest sanitation, in our understanding of host-parasite relationships.
Resumo:
SUMMARY: A top scoring pair (TSP) classifier consists of a pair of variables whose relative ordering can be used for accurately predicting the class label of a sample. This classification rule has the advantage of being easily interpretable and more robust against technical variations in data, as those due to different microarray platforms. Here we describe a parallel implementation of this classifier which significantly reduces the training time, and a number of extensions, including a multi-class approach, which has the potential of improving the classification performance. AVAILABILITY AND IMPLEMENTATION: Full C++ source code and R package Rgtsp are freely available from http://lausanne.isb-sib.ch/~vpopovic/research/. The implementation relies on existing OpenMP libraries.
Resumo:
Natural selection favors alleles that increase the number of offspring produced by their carriers. But in a world that is inherently uncertain within generations, selection also favors alleles that reduce the variance in the number of offspring produced. If previous studies have established this principle, they have largely ignored fundamental aspects of sexual reproduction and therefore how selection on sex-specific reproductive variance operates. To study the evolution and consequences of sex-specific reproductive variance, we present a population-genetic model of phenotypic evolution in a dioecious population that incorporates previously neglected components of reproductive variance. First, we derive the probability of fixation for mutations that affect male and/or female reproductive phenotypes under sex-specific selection. We find that even in the simplest scenarios, the direction of selection is altered when reproductive variance is taken into account. In particular, previously unaccounted for covariances between the reproductive outputs of different individuals are expected to play a significant role in determining the direction of selection. Then, the probability of fixation is used to develop a stochastic model of joint male and female phenotypic evolution. We find that sex-specific reproductive variance can be responsible for changes in the course of long-term evolution. Finally, the model is applied to an example of parental-care evolution. Overall, our model allows for the evolutionary analysis of social traits in finite and dioecious populations, where interactions can occur within and between sexes under a realistic scenario of reproduction.
Resumo:
In a series of seminal articles in 1974, 1975, and 1977, J. H. Gillespie challenged the notion that the "fittest" individuals are those that produce on average the highest number of offspring. He showed that in small populations, the variance in fecundity can determine fitness as much as mean fecundity. One likely reason why Gillespie's concept of within-generation bet hedging has been largely ignored is the general consensus that natural populations are of large size. As a consequence, essentially no work has investigated the role of the fecundity variance on the evolutionary stable state of life-history strategies. While typically large, natural populations also tend to be subdivided in local demes connected by migration. Here, we integrate Gillespie's measure of selection for within-generation bet hedging into the inclusive fitness and game theoretic measure of selection for structured populations. The resulting framework demonstrates that selection against high variance in offspring number is a potent force in large, but structured populations. More generally, the results highlight that variance in offspring number will directly affect various life-history strategies, especially those involving kin interaction. The selective pressures on three key traits are directly investigated here, namely within-generation bet hedging, helping behaviors, and the evolutionary stable dispersal rate. The evolutionary dynamics of all three traits are markedly affected by variance in offspring number, although to a different extent and under different demographic conditions.
Resumo:
Résumé : La production de nectar assure aux plantes entomophiles un important succès reproducteur. Malgré cela, de nombreuses espèces d'orchidées ne produisent pas de nectar. La majorité de ces orchidées dites trompeuses exploitent simplement l'instinct des pollinisateurs généralistes, qui les pousse à chercher du nectar dans les fleurs. Afin d'optimiser la récolte de nectar, les pollinisateurs apprennent à différencier les fleurs trompeuses des nectarifères, et à concentrer leurs visites sur ces dernières, au détriment des plantes trompeuses. Chez les orchidées non autogames, la reproduction est assurée uniquement par les pollinisateurs. L'apprentissage des pollinisateurs a donc un impact négatif sur la reproduction des orchidées trompeuses. Cependant, les caractéristiques d'une espèce trompeuse et des espèces nectarifères au sein d'une communauté végétale peuvent affecter l'apprentissage et le taux de visite des pollinisateurs aux plantes trompeuses. J'ai réalisé des expériences en milieu naturel et en milieu contrôlé, pour déterminer si les caractéristiques florales, spatiales et temporelles des communautés affectent le taux de visite et le succès reproducteur de plantes trompeuses. Une agrégation spatiale élevée des plantes trompeuses et des plantes nectarifères diminue le succès reproducteur des plantes trompeuses. De plus, les pollinisateurs visitent plus souvent l'espèce trompeuse Iorsque ses fleurs sont de couleur similaire à celles de l'espèce nectarifère. Cet effet bénéfique de la similarité pour la couleur des fleurs s'accentue si les deux espèces sont mélangées et proches spatialement, ou si l'espèce trompeuse fleurit après l'espèce nectarifère. Enfin, le comportement des pollinisateurs n'est pas tout de suite affecté lorsque les caractéristiques de la communauté changent. Les caractéristiques des communautés végétales affectent donc la reproduction des espèces trompeuses. Bien que L'absence de coûts associés à la production de nectar, l'exportation efficace de pollen et la production de graines de qualité dont bénéficient les orchidées trompeuses favorisent Ieur maintien, les caractéristiques de la communauté peuvent aussi y contribuer. Mon étude fournit donc une explication alternative et complémentaire au maintien des orchidées trompeuses. Je conclus par une discussion des implications possibles de ces résultats sur le maintien et l'évolution des orchidées trompeuses, en tenant compte de la dynamique des caractéristiques des communautés végétales naturelles. Abstract : Despite the importance of producing food to ensure a high reproductive success, many orchid species lack such rewards. The majority of deceptive orchids simply exploit the instinctive food-foraging behaviour of generalist pollinators. This strategy is termed generalized food deception. To optimize their foraging efficiency, pollinators can learn to discriminate deceptive from rewarding flowers and to focus their visits to the rewarding plants, to the disadvantage of the deceptive plants. Because the reproductive success of non-autogamous orchids entirely relies on pollinator visitation rate, pollinator learning decreases the reproductive success of deceptive orchids. However, the characteristics of deceptive and rewarding plants within a community may affect pollinator learning and visitation rate to a deceptive orchid. Therefore, the biological characteristics of natural plant communities may be crucial to the maintenance of generalized food deceptive orchids. My study focused on the floral, spatial and temporal characteristics of plant communities. I used both in and ex sitar experiments to investigate whether these characteristics influence pollinator visitation rates and the reproductive success of deceptive orchids. A high spatial aggregation of both deceptive and rewarding species decreased the reproductive success of the deceptive species. Also, being of similar flower colour to rewarding sympatric species increased pollinator visitation rates to a deceptive species. The beneficial effect of flower colour similarity was even more pronounced when both species were spatially closely mingled or when the deceptive species flowered after the rewarding species. Finally, pollinator behaviour was unaffected in the short term by a change in the characteristics of plant communities, indicating that pollinators need time to learn under new conditions. Thus, the characteristics of plant communities may crucially affect the reproductive success of deceptive orchids. Although the absence of costs associated with nectar production, the efficient pollen export and the high seed quality of deceptive orchids may favour their maintenance, the characteristics of plant communities may also contribute to it. Therefore, my study provides an alternative yet complementary explanation to the maintenance of generalized food deceptive orchids in natural populations. I discuss the possible implications for the maintenance and the evolution of generalized food deceptive orchids with regards to the floral and temporal dynamics of natural plant communities.
Resumo:
Generalized Born methods are currently among the solvation models most commonly used for biological applications. We reformulate the generalized Born molecular volume method initially described by (Lee et al, 2003, J Phys Chem, 116, 10606; Lee et al, 2003, J Comp Chem, 24, 1348) using fast Fourier transform convolution integrals. Changes in the initial method are discussed and analyzed. Finally, the method is extensively checked with snapshots from common molecular modeling applications: binding free energy computations and docking. Biologically relevant test systems are chosen, including 855-36091 atoms. It is clearly demonstrated that, precision-wise, the proposed method performs as good as the original, and could better benefit from hardware accelerated boards.