35 resultados para full-scale testing
Resumo:
Des progrès significatifs ont été réalisés dans le domaine de l'intégration quantitative des données géophysique et hydrologique l'échelle locale. Cependant, l'extension à de plus grandes échelles des approches correspondantes constitue encore un défi majeur. Il est néanmoins extrêmement important de relever ce défi pour développer des modèles fiables de flux des eaux souterraines et de transport de contaminant. Pour résoudre ce problème, j'ai développé une technique d'intégration des données hydrogéophysiques basée sur une procédure bayésienne de simulation séquentielle en deux étapes. Cette procédure vise des problèmes à plus grande échelle. L'objectif est de simuler la distribution d'un paramètre hydraulique cible à partir, d'une part, de mesures d'un paramètre géophysique pertinent qui couvrent l'espace de manière exhaustive, mais avec une faible résolution (spatiale) et, d'autre part, de mesures locales de très haute résolution des mêmes paramètres géophysique et hydraulique. Pour cela, mon algorithme lie dans un premier temps les données géophysiques de faible et de haute résolution à travers une procédure de réduction déchelle. Les données géophysiques régionales réduites sont ensuite reliées au champ du paramètre hydraulique à haute résolution. J'illustre d'abord l'application de cette nouvelle approche dintégration des données à une base de données synthétiques réaliste. Celle-ci est constituée de mesures de conductivité hydraulique et électrique de haute résolution réalisées dans les mêmes forages ainsi que destimations des conductivités électriques obtenues à partir de mesures de tomographic de résistivité électrique (ERT) sur l'ensemble de l'espace. Ces dernières mesures ont une faible résolution spatiale. La viabilité globale de cette méthode est testée en effectuant les simulations de flux et de transport au travers du modèle original du champ de conductivité hydraulique ainsi que du modèle simulé. Les simulations sont alors comparées. Les résultats obtenus indiquent que la procédure dintégration des données proposée permet d'obtenir des estimations de la conductivité en adéquation avec la structure à grande échelle ainsi que des predictions fiables des caractéristiques de transports sur des distances de moyenne à grande échelle. Les résultats correspondant au scénario de terrain indiquent que l'approche d'intégration des données nouvellement mise au point est capable d'appréhender correctement les hétérogénéitées à petite échelle aussi bien que les tendances à gande échelle du champ hydraulique prévalent. Les résultats montrent également une flexibilté remarquable et une robustesse de cette nouvelle approche dintégration des données. De ce fait, elle est susceptible d'être appliquée à un large éventail de données géophysiques et hydrologiques, à toutes les gammes déchelles. Dans la deuxième partie de ma thèse, j'évalue en détail la viabilité du réechantillonnage geostatique séquentiel comme mécanisme de proposition pour les méthodes Markov Chain Monte Carlo (MCMC) appliquées à des probmes inverses géophysiques et hydrologiques de grande dimension . L'objectif est de permettre une quantification plus précise et plus réaliste des incertitudes associées aux modèles obtenus. En considérant une série dexemples de tomographic radar puits à puits, j'étudie deux classes de stratégies de rééchantillonnage spatial en considérant leur habilité à générer efficacement et précisément des réalisations de la distribution postérieure bayésienne. Les résultats obtenus montrent que, malgré sa popularité, le réechantillonnage séquentiel est plutôt inefficace à générer des échantillons postérieurs indépendants pour des études de cas synthétiques réalistes, notamment pour le cas assez communs et importants où il existe de fortes corrélations spatiales entre le modèle et les paramètres. Pour résoudre ce problème, j'ai développé un nouvelle approche de perturbation basée sur une déformation progressive. Cette approche est flexible en ce qui concerne le nombre de paramètres du modèle et lintensité de la perturbation. Par rapport au rééchantillonage séquentiel, cette nouvelle approche s'avère être très efficace pour diminuer le nombre requis d'itérations pour générer des échantillons indépendants à partir de la distribution postérieure bayésienne. - Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending corresponding approaches beyond the local scale still represents a major challenge, yet is critically important for the development of reliable groundwater flow and contaminant transport models. To address this issue, I have developed a hydrogeophysical data integration technique based on a two-step Bayesian sequential simulation procedure that is specifically targeted towards larger-scale problems. The objective is to simulate the distribution of a target hydraulic parameter based on spatially exhaustive, but poorly resolved, measurements of a pertinent geophysical parameter and locally highly resolved, but spatially sparse, measurements of the considered geophysical and hydraulic parameters. To this end, my algorithm links the low- and high-resolution geophysical data via a downscaling procedure before relating the downscaled regional-scale geophysical data to the high-resolution hydraulic parameter field. I first illustrate the application of this novel data integration approach to a realistic synthetic database consisting of collocated high-resolution borehole measurements of the hydraulic and electrical conductivities and spatially exhaustive, low-resolution electrical conductivity estimates obtained from electrical resistivity tomography (ERT). The overall viability of this method is tested and verified by performing and comparing flow and transport simulations through the original and simulated hydraulic conductivity fields. The corresponding results indicate that the proposed data integration procedure does indeed allow for obtaining faithful estimates of the larger-scale hydraulic conductivity structure and reliable predictions of the transport characteristics over medium- to regional-scale distances. The approach is then applied to a corresponding field scenario consisting of collocated high- resolution measurements of the electrical conductivity, as measured using a cone penetrometer testing (CPT) system, and the hydraulic conductivity, as estimated from electromagnetic flowmeter and slug test measurements, in combination with spatially exhaustive low-resolution electrical conductivity estimates obtained from surface-based electrical resistivity tomography (ERT). The corresponding results indicate that the newly developed data integration approach is indeed capable of adequately capturing both the small-scale heterogeneity as well as the larger-scale trend of the prevailing hydraulic conductivity field. The results also indicate that this novel data integration approach is remarkably flexible and robust and hence can be expected to be applicable to a wide range of geophysical and hydrological data at all scale ranges. In the second part of my thesis, I evaluate in detail the viability of sequential geostatistical resampling as a proposal mechanism for Markov Chain Monte Carlo (MCMC) methods applied to high-dimensional geophysical and hydrological inverse problems in order to allow for a more accurate and realistic quantification of the uncertainty associated with the thus inferred models. Focusing on a series of pertinent crosshole georadar tomographic examples, I investigated two classes of geostatistical resampling strategies with regard to their ability to efficiently and accurately generate independent realizations from the Bayesian posterior distribution. The corresponding results indicate that, despite its popularity, sequential resampling is rather inefficient at drawing independent posterior samples for realistic synthetic case studies, notably for the practically common and important scenario of pronounced spatial correlation between model parameters. To address this issue, I have developed a new gradual-deformation-based perturbation approach, which is flexible with regard to the number of model parameters as well as the perturbation strength. Compared to sequential resampling, this newly proposed approach was proven to be highly effective in decreasing the number of iterations required for drawing independent samples from the Bayesian posterior distribution.
Resumo:
OBJECTIVE: To determine the psychometric properties of an adapted version of the Falls Efficacy Scale (FES) in older rehabilitation patients. DESIGN: Cross-sectional survey. SETTING: Postacute rehabilitation facility in Switzerland. PARTICIPANTS: Seventy elderly persons aged 65 years and older receiving postacute, inpatient rehabilitation. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: FES questions asked about subject's confidence (range, 0 [none]-10 [full]) in performing 12 activities of daily living (ADLs) without falling. Construct validity was assessed using correlation with measures of physical (basic ADLs [BADLs]), cognitive (Mini-Mental State Examination [MMSE]), affective (15-item Geriatric Depression Scale [GDS]), and mobility (Performance Oriented Mobility Assessment [POMA]) performance. Predictive validity was assessed using the length of rehabilitation stay as the outcome. To determine test-retest reliability, FES administration was repeated in a random subsample (n=20) within 72 hours. RESULTS: FES scores ranged from 10 to 120 (mean, 88.7+/-26.5). Internal consistency was optimal (Cronbach alpha=.90), and item-to-total correlations were all significant, ranging from .56 (toilet use) to .82 (reaching into closets). Test-retest reliability was high (intraclass correlation coefficient, .97; 95% confidence interval, .95-.99; P<.001). Subjects reporting a fall in the previous year had lower FES scores than nonfallers (85.0+/-25.2 vs 94.4+/-27.9, P=.054). The FES correlated with POMA (Spearman rho=.40, P<.001), MMSE (rho=.37, P=.001), BADL (rho=.43, P<.001), and GDS (rho=-.53, P<.001) scores. These relationships remained significant in multivariable analysis for BADLs and GDS, confirming FES construct validity. There was a significant inverse relationship between FES score and the length of rehabilitation stay, independent of sociodemographic, functional, cognitive, and fall status. CONCLUSIONS: This adapted FES is reliable and valid in older patients undergoing postacute rehabilitation. The independent association between poor falls efficacy and increased length of stay has not been previously described and needs further investigations.
Resumo:
Debris flow hazard modelling at medium (regional) scale has been subject of various studies in recent years. In this study, hazard zonation was carried out, incorporating information about debris flow initiation probability (spatial and temporal), and the delimitation of the potential runout areas. Debris flow hazard zonation was carried out in the area of the Consortium of Mountain Municipalities of Valtellina di Tirano (Central Alps, Italy). The complexity of the phenomenon, the scale of the study, the variability of local conditioning factors, and the lacking data limited the use of process-based models for the runout zone delimitation. Firstly, a map of hazard initiation probabilities was prepared for the study area, based on the available susceptibility zoning information, and the analysis of two sets of aerial photographs for the temporal probability estimation. Afterwards, the hazard initiation map was used as one of the inputs for an empirical GIS-based model (Flow-R), developed at the University of Lausanne (Switzerland). An estimation of the debris flow magnitude was neglected as the main aim of the analysis was to prepare a debris flow hazard map at medium scale. A digital elevation model, with a 10 m resolution, was used together with landuse, geology and debris flow hazard initiation maps as inputs of the Flow-R model to restrict potential areas within each hazard initiation probability class to locations where debris flows are most likely to initiate. Afterwards, runout areas were calculated using multiple flow direction and energy based algorithms. Maximum probable runout zones were calibrated using documented past events and aerial photographs. Finally, two debris flow hazard maps were prepared. The first simply delimits five hazard zones, while the second incorporates the information about debris flow spreading direction probabilities, showing areas more likely to be affected by future debris flows. Limitations of the modelling arise mainly from the models applied and analysis scale, which are neglecting local controlling factors of debris flow hazard. The presented approach of debris flow hazard analysis, associating automatic detection of the source areas and a simple assessment of the debris flow spreading, provided results for consequent hazard and risk studies. However, for the validation and transferability of the parameters and results to other study areas, more testing is needed.
Resumo:
The present study aims to identify organisational antecedents of public service motivation (PSM). Numerous research has been devoted to the identification of socio-demographic PSM antecedents, or to its outcomes. However, organisational antecedents are understudied thus far. In order to fill this research gap, we question whether human resources management practices, whether intrinsic or extrinsic ones, might be related to PSM. Drawing on person-environment fit theoretical assumptions, we depart from the idea that PSM may be developed or sustained by HRM practices, which might contribute to create an environment allowing public employees to fulfill their needs or personal aspirations. Based upon a survey in an important Swiss municipality (N = 859), our findings surprisingly highlight that extrinsic HRM practices are significantly related to PSM, whereas intrinsic ones are not. Furthermore, when taking into account work-related outcomes, such as job satisfaction and organisational commitment, there is evidence of full mediation effects towards extrinsic HRM practices from organisational commitment. Astonishingly, neither job satisfaction nor intrinsic HRM practices are significantly related to PSM.
Resumo:
Microsatellite instability (MSI) testing in clinics is becoming increasingly widespread; therefore, there is an urgent need for methodology standardization and the availability of quality control. This study is aimed to assess the interlaboratory reproducibility of MSI testing in archive samples by using a panel of 5 recently introduced, mononucleotide repeats (MNR). The quality control involved 8 European institutions. Participants were supplied with DNA extracted from 15 archive colon carcinoma samples and from the corresponding normal tissues. Every group was asked to assess the MSI status of the samples by using the BAT25, BAT26, NR21, NR24, and NR27 mononucleotide markers. Four institutions repeated the analysis using the NCI reference panel to confirm the results obtained with the MNR markers. The overall concordance among institutions for MSI analyses at single locus level was 97.7% when using the MNR panel and 95.0% with the NCI one. The laboratories obtained a full agreement in scoring the MSI status of each patient sample, both using the mononucleotide and the NCI marker sets. With the NCI marker set, however, concordance was lowered to 85.7% when considering the MSI-Low phenotype. Concordance between the 2 panels in scoring the MSI status of each sample was complete if no discrimination was made between MSI-Stable and MSI-L, whereas it dropped to 76.7% if MSI-L was considered. In conclusion, the use of the MNR panel seems to be a robust approach that yields a very high level of reproducibility. The results obtained with the 5 MNR are diagnostically consistent with those obtained by the use of the NCI markers, except for the MSI-Low phenotype.
Resumo:
The diagnosis of muscular dystrophies or the assessment of the functional benefit of gene or cell therapies can be difficult, especially for poorly accessible muscles, and it often lacks a singlefiber resolution. In the present study, we evaluated whether muscle diseases can be diagnosed from small biopsies using atomic force microscopy (AFM). AFM was shown to provide a sensitive and quantitative description of the resistance of normal and dystrophic myofibers within live muscle tissues explanted from Duchenne mdx mice. The rescue of dystrophin expression by gene therapy approaches led to the functional recovery of treated dystrophic muscle fibers, as probed using AFM and by in situ wholemuscle strength measurements. Comparison of muscles treated with viral or non-viral vectors indicated that the efficacy of the gene transfer approaches could be distinguished with a single myofiber resolution. This indicated full correction of the resistance to deformation in nearly all of the muscle fibers treated with an adeno-associated viral vector that mediates exon-skipping on the dystrophin mRNA. Having shown that AFM can provide a quantitative assessment of the expression of muscle proteins and of the muscular function in animal models, we assessed myofiber resistance in the context of human muscular dystrophies and myopathies. Thus, various forms of human Becker syndrome can also be detected using AFM in blind studies of small frozen biopsies from human patients. Interestingly, it also allowed the detection of anomalies in a fraction of the muscle fibers from patients showing a muscle weakness that could not be attributed to a known molecular or genetic defect. Overall, we conclude that AFM may provide a useful method to complement current diagnosis tools of known and unknown muscular diseases, in research and in a clinical context.
Resumo:
Studies assessing skin irritation to chemicals have traditionally used laboratory animals; however, such methods are questionable regarding their relevance for humans. New in vitro methods have been validated, such as the reconstructed human epidermis (RHE) model (Episkin®, Epiderm®). The comparison (accuracy) with in vivo results such as the 4-h human patch test (HPT) is 76% at best (Epiderm®). There is a need to develop an in vitro method that better simulates the anatomo-pathological changes encountered in vivo. To develop an in vitro method to determine skin irritation using human viable skin through histopathology, and compare the results of 4 tested substances to the main in vitro methods and in vivo animal method (Draize test). Human skin removed during surgery was dermatomed and mounted on an in vitro flow-through diffusion cell system. Ten chemicals with known non-irritant (heptylbutyrate, hexylsalicylate, butylmethacrylate, isoproturon, bentazon, DEHP and methylisothiazolinone (MI)) and irritant properties (folpet, 1-bromohexane and methylchloroisothiazolinone (MCI/MI)), a negative control (sodiumchloride) and a positive control (sodiumlaurylsulphate) were applied. The skin was exposed at least for 4h. Histopathology was performed to investigate irritation signs (spongiosis, necrosis, vacuolization). We obtained 100% accuracy with the HPT model; 75% with the RHE models and 50% with the Draize test for 4 tested substances. The coefficients of variation (CV) between our three test batches were <0.1, showing good reproducibility. Furthermore, we reported objectively histopathological irritation signs (irritation scale): strong (folpet), significant (1-bromohexane), slight (MCI/MI at 750/250ppm) and none (isoproturon, bentazon, DEHP and MI). This new in vitro test method presented effective results for the tested chemicals. It should be further validated using a greater number of substances; and tested in different laboratories in order to suitably evaluate reproducibility.
Resumo:
Genetic polymorphisms have currently been described in more than 200 systems affecting pharmacological responses (cytochromes P450, conjugation enzymes, transporters, receptors, effectors of response, protection mechanisms, determinants of immunity). Pharmacogenetic testing, i.e. the profiling of individual patients for such variations, is about to become largely available. Recent progress in the pharmacogenetics of tamoxifen, oral anticoagulants and anti-HIV agents is reviewed to discuss critically their potential impact on prescription and contribution/limits for improving rational and safe use of pharmaceuticals. Prospective controlled trials are required to evaluate large-scale pharmacogenetic testing in therapeutics. Ethical, social and psychological issues deserve particular attention.
Resumo:
MALDI-TOF MS can be used for the identification of microorganism species. We have extended its application to a novel assay of Candida albicans susceptibility to fluconazole, based on monitoring modifications of the proteome of yeast cells grown in the presence of varying drug concentrations. The method was accurate, and reliable, and showed full agreement with the Clinical Laboratory Standards Institute's reference method. This proof-of-concept demonstration highlights the potential for this approach to test other pathogens.
Resumo:
BACKGROUND: Associations between maternal sensitivity and child attachment have been established in many samples, but the strength of the association varies across populations. The sensitivity-attachment link has never been examined at the level of representations nor among premature samples. OBJECTIVE: The present study is aimed at exploring associations between maternal interactive behaviour and children's attachment representations in a population of preterm and full-term infants. METHOD: Maternal interactive behaviour was assessed at 6 and 18 months (Ainsworth Sensitivity Scale & Care Index) and children's attachment representations were measured at 42 months (Attachment Story Completion Task) in a sample of preterm (N=48) and full-term (N=23) infants. RESULTS: Maternal unresponsiveness at 6 months and sensitivity at 18 months explained 54% of the variance of disorganized attachment representations in the full-term group but was not significantly related to attachment patterns in the preterm group. CONCLUSION: These results corroborate previous work on the causes of disorganized attachment and also point to the need to consider the development of attachment differently for children evolving in specific developmental contexts. They especially stress the importance of distinguishing between risk factors associated with the mother as opposed to the child.
Resumo:
Aim. To predict the fate of alpine interactions involving specialized species, using a monophagous beetle and its host-plant as a case study. Location. The Alps. Methods. We investigated genetic structuring of the herbivorous beetle Oreina gloriosa and its specific host-plant Peucedanum ostruthium. We used genome fingerprinting (in the insect and the plant) and sequence data (in the insect) to compare the distribution of the main gene pools in the two associated species and to estimate divergence time in the insect, a proxy for the temporal origin of the interaction. We quantified the similarity in spatial genetic structures by performing a Procrustes analysis, a tool from the shape theory. Finally, we simulated recolonization of an empty space analogous to the deglaciated Alps just after ice retreat by two lineages from two species showing unbalanced dependence, to examine how timing of the recolonization process, as well as dispersal capacities of associated species, could explain the observed pattern. Results. Contrasting with expectations based on their asymmetrical dependence, patterns in the beetle and plant were congruent at a large scale. Exceptions occurred at a regional scale in areas of admixture, matching known suture zones in Alpine plants. Simulations using a lattice-based model suggested these empirical patterns arose during or soon after recolonization, long after the estimated origin of the interaction c. 0.5 million years ago. Main conclusions. Species-specific interactions are scarce in alpine habitats because glacial cycles have limited opportunities for coevolution. Their fate, however, remains uncertain under climate change. Here we show that whereas most dispersal routes are paralleled at large scale, regional incongruence implies that the destinies of the species might differ under changing climate. This may be a consequence of the host-dependence of the beetle that locally limits the establishment of dispersing insects.
Resumo:
BACKGROUND: We aimed to assess the value of a structured clinical assessment and genetic testing for refining the diagnosis of abacavir hypersensitivity reactions (ABC-HSRs) in a routine clinical setting. METHODS: We performed a diagnostic reassessment using a structured patient chart review in individuals who had stopped ABC because of suspected HSR. Two HIV physicians blinded to the human leukocyte antigen (HLA) typing results independently classified these individuals on a scale between 3 (ABC-HSR highly likely) and -3 (ABC-HSR highly unlikely). Scoring was based on symptoms, onset of symptoms and comedication use. Patients were classified as clinically likely (mean score > or =2), uncertain (mean score > or = -1 and < or = 1) and unlikely (mean score < or = -2). HLA typing was performed using sequence-based methods. RESULTS: From 131 reassessed individuals, 27 (21%) were classified as likely, 43 (33%) as unlikely and 61 (47%) as uncertain ABC-HSR. Of the 131 individuals with suspected ABC-HSR, 31% were HLA-B*5701-positive compared with 1% of 140 ABC-tolerant controls (P < 0.001). HLA-B*5701 carriage rate was higher in individuals with likely ABC-HSR compared with those with uncertain or unlikely ABC-HSR (78%, 30% and 5%, respectively, P < 0.001). Only six (7%) HLA-B*5701-negative individuals were classified as likely HSR after reassessment. CONCLUSIONS: HLA-B*5701 carriage is highly predictive of clinically diagnosed ABC-HSR. The high proportion of HLA-B*5701-negative individuals with minor symptoms among individuals with suspected HSR indicates overdiagnosis of ABC-HSR in the era preceding genetic screening. A structured clinical assessment and genetic testing could reduce the rate of inappropriate ABC discontinuation and identify individuals at high risk for ABC-HSR.
Resumo:
PURPOSE: To select and propose a set of knowledge, attitudes, and skills essential for the care of adolescents; to encourage the development of adolescent health multidisciplinary networks; and to set up training programs in as many European countries as possible. METHODS: The curriculum was developed by 16 physicians from 11 European countries with various professional specializations. In line with modern guidelines in medical education, it is a modular, flexible instrument which covers the main teaching areas in the field, such as basic skills (i.e. setting, rights and confidentiality, gender and cultural issues) as well as specific themes (i.e. sexual and reproductive health, eating disorders, chronic conditions). It consists of 17 thematic modules, each containing detailed objectives, learning approaches, examples, and evaluation methods. RESULT: Two international one-week summer schools were used to assess the feasibility and appropriateness of the curriculum. The overall evaluation was good, with most of the items surpassing three on a four-point Likert scale. However, it pointed to several aspects (process and content) which will need to be refined in the future, such as an increase in interactive sessions (role playing), and a better mix of clinical and public health issues.
Resumo:
There is a debate on whether an influence of biotic interactions on species distributions can be reflected at macro-scale levels. Whereas the influence of biotic interactions on spatial arrangements is beginning to be studied at local scales, similar studies at macro-scale levels are scarce. There is no example disentangling, from other similarities with related species, the influence of predator-prey interactions on species distributions at macro-scale levels. In this study we aimed to disentangle predator-prey interactions from species distribution data following an experimental approach including a factorial design. As a case of study we selected the short-toed eagle because of its known specialization on certain prey reptiles. We used presence-absence data at a 100 Km2 spatial resolution to extract the explanatory capacity of different environmental predictors (five abiotic and two biotic predictors) on the short-toed eagle species distribution in Peninsular Spain. Abiotic predictors were relevant climatic and topographic variables, and relevant biotic predictors were prey richness and forest density. In addition to the short-toed eagle, we also obtained the predictor's explanatory capacities for i) species of the same family Accipitridae (as a reference), ii) for other birds of different families (as controls) and iii) species with randomly selected presences (as null models). We run 650 models to test for similarities of the short-toed eagle, controls and null models with reference species, assessed by regressions of explanatory capacities. We found higher similarities between the short-toed eagle and other species of the family Accipitridae than for the other two groups. Once corrected by the family effect, our analyses revealed a signal of predator-prey interaction embedded in species distribution data. This result was corroborated with additional analyses testing for differences in the concordance between the distributions of different bird categories and the distributions of either prey or non-prey species of the short-toed eagle. Our analyses were useful to disentangle a signal of predator-prey interactions from species distribution data at a macro-scale. This study highlights the importance of disentangling specific features from the variation shared with a given taxonomic level.
Resumo:
Predicting progeny performance from parental genetic divergence can potentially enhance the efficiency of supportive breeding programmes and facilitate risk assessment. Yet, experimental testing of the effects of breeding distance on offspring performance remains rare, especially in wild populations of vertebrates. Recent studies have demonstrated that embryos of salmonid fish are sensitive indicators of additive genetic variance for viability traits. We therefore used gametes of wild brown trout (Salmo trutta) from five genetically distinct populations of a river catchment in Switzerland, and used a full factorial design to produce over 2,000 embryos in 100 different crosses with varying genetic distances (FST range 0.005-0.035). Customized egg capsules allowed recording the survival of individual embryos until hatching under natural field conditions. Our breeding design enabled us to evaluate the role of the environment, of genetic and nongenetic parental contributions, and of interactions between these factors, on embryo viability. We found that embryo survival was strongly affected by maternal environmental (i.e. non-genetic) effects and by the microenvironment, i.e. by the location within the gravel. However, embryo survival was not predicted by population divergence, parental allelic dissimilarity, or heterozygosity, neither in the field nor under laboratory conditions. Our findings suggest that the genetic effects of inter-population hybridization within a genetically differentiated meta-population can be minor in comparison to environmental effects.