22 resultados para finite-difference time-domain (FDTD) method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have recently shown that at isotopic steady state (13)C NMR can provide a direct measurement of glycogen concentration changes, but that the turnover of glycogen was not accessible with this protocol. The aim of the present study was to design, implement and apply a novel dual-tracer infusion protocol to simultaneously measure glycogen concentration and turnover. After reaching isotopic steady state for glycogen C1 using [1-(13)C] glucose administration, [1,6-(13)C(2)] glucose was infused such that isotopic steady state was maintained at the C1 position, but the C6 position reflected (13)C label incorporation. To overcome the large chemical shift displacement error between the C1 and C6 resonances of glycogen, we implemented 2D gradient based localization using the Fourier series window approach, in conjunction with time-domain analysis of the resulting FIDs using jMRUI. The glycogen concentration of 5.1 +/- 1.6 mM measured from the C1 position was in excellent agreement with concomitant biochemical determinations. Glycogen turnover measured from the rate of label incorporation into the C6 position of glycogen in the alpha-chloralose anesthetized rat was 0.7 micromol/g/h.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major issue in the application of waveform inversion methods to crosshole ground-penetrating radar (GPR) data is the accurate estimation of the source wavelet. Here, we explore the viability and robustness of incorporating this step into a recently published time-domain inversion procedure through an iterative deconvolution approach. Our results indicate that, at least in non-dispersive electrical environments, such an approach provides remarkably accurate and robust estimates of the source wavelet even in the presence of strong heterogeneity of both the dielectric permittivity and electrical conductivity. Our results also indicate that the proposed source wavelet estimation approach is relatively insensitive to ambient noise and to the phase characteristics of the starting wavelet. Finally, there appears to be little to no trade-off between the wavelet estimation and the tomographic imaging procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of geophysical methods, such as ground-penetrating radar (GPR), have the potential to provide valuable information on hydrological properties in the unsaturated zone. In particular, the stochastic inversion of such data within a coupled geophysical-hydrological framework may allow for the effective estimation of vadose zone hydraulic parameters and their corresponding uncertainties. A critical issue in stochastic inversion is choosing prior parameter probability distributions from which potential model configurations are drawn and tested against observed data. A well chosen prior should reflect as honestly as possible the initial state of knowledge regarding the parameters and be neither overly specific nor too conservative. In a Bayesian context, combining the prior with available data yields a posterior state of knowledge about the parameters, which can then be used statistically for predictions and risk assessment. Here we investigate the influence of prior information regarding the van Genuchten-Mualem (VGM) parameters, which describe vadose zone hydraulic properties, on the stochastic inversion of crosshole GPR data collected under steady state, natural-loading conditions. We do this using a Bayesian Markov chain Monte Carlo (MCMC) inversion approach, considering first noninformative uniform prior distributions and then more informative priors derived from soil property databases. For the informative priors, we further explore the effect of including information regarding parameter correlation. Analysis of both synthetic and field data indicates that the geophysical data alone contain valuable information regarding the VGM parameters. However, significantly better results are obtained when we combine these data with a realistic, informative prior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cross-hole radar tomography is a useful tool for mapping shallow subsurface electrical properties viz. dielectric permittivity and electrical conductivity. Common practice is to invert cross-hole radar data with ray-based tomographic algorithms using first arrival traveltimes and first cycle amplitudes. However, the resolution of conventional standard ray-based inversion schemes for cross-hole ground-penetrating radar (GPR) is limited because only a fraction of the information contained in the radar data is used. The resolution can be improved significantly by using a full-waveform inversion that considers the entire waveform, or significant parts thereof. A recently developed 2D time-domain vectorial full-waveform crosshole radar inversion code has been modified in the present study by allowing optimized acquisition setups that reduce the acquisition time and computational costs significantly. This is achieved by minimizing the number of transmitter points and maximizing the number of receiver positions. The improved algorithm was employed to invert cross-hole GPR data acquired within a gravel aquifer (4-10 m depth) in the Thur valley, Switzerland. The simulated traces of the final model obtained by the full-waveform inversion fit the observed traces very well in the lower part of the section and reasonably well in the upper part of the section. Compared to the ray-based inversion, the results from the full-waveform inversion show significantly higher resolution images. At either side, 2.5 m distance away from the cross-hole plane, borehole logs were acquired. There is a good correspondence between the conductivity tomograms and the natural gamma logs at the boundary of the gravel layer and the underlying lacustrine clay deposits. Using existing petrophysical models, the inversion results and neutron-neutron logs are converted to porosity. Without any additional calibration, the values obtained for the converted neutron-neutron logs and permittivity results are very close and similar vertical variations can be observed. The full-waveform inversion provides in both cases additional information about the subsurface. Due to the presence of the water table and associated refracted/reflected waves, the upper traces are not well fitted and the upper 2 m in the permittivity and conductivity tomograms are not reliably reconstructed because the unsaturated zone is not incorporated into the inversion domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent ink dating methods focused mainly on changes in solvent amounts occurring over time. A promising method was developed at the Landeskriminalamt of Munich using thermal desorption (TD) followed by gas chromatography / mass spectrometry (GC/MS) analysis. Sequential extractions of the phenoxyethanol present in ballpoint pen ink entries were carried out at two different temperatures. This method is applied in forensic practice and is currently implemented in several laboratories participating to the InCID group (International Collaboration on Ink Dating). However, harmonization of the method between the laboratories proved to be a particularly sensitive and time consuming task. The main aim of this work was therefore to implement the TD-GC/MS method at the Bundeskriminalamt (Wiesbaden, Germany) in order to evaluate if results were comparable to those obtained in Munich. At first validation criteria such as limits of reliable measurements, linearity and repeatability were determined. Samples were prepared in three different laboratories using the same inks and analyzed using two TDS-GC/MS instruments (one in Munich and one in Wiesbaden). The inter- and intra-laboratory variability of the ageing parameter was determined and ageing curves were compared. While inks stored in similar conditions yielded comparable ageing curves, it was observed that significantly different storage conditions had an influence on the resulting ageing curves. Finally, interpretation models, such as thresholds and trend tests, were evaluated and discussed in view of the obtained results. Trend tests were considered more suitable than threshold models. As both approaches showed limitations, an alternative model, based on the slopes of the ageing curves, was also proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the tools proposed to assess the athlete's "fatigue," the analysis of heart rate variability (HRV) provides an indirect evaluation of the settings of autonomic control of heart activity. HRV analysis is performed through assessment of time-domain indices, the square root of the mean of the sum of the squares of differences between adjacent normal R-R intervals (RMSSD) measured during short (5 min) recordings in supine position upon awakening in the morning and particularly the logarithm of RMSSD (LnRMSSD) has been proposed as the most useful resting HRV indicator. However, if RMSSD can help the practitioner to identify a global "fatigue" level, it does not allow discriminating different types of fatigue. Recent results using spectral HRV analysis highlighted firstly that HRV profiles assessed in supine and standing positions are independent and complementary; and secondly that using these postural profiles allows the clustering of distinct sub-categories of "fatigue." Since, cardiovascular control settings are different in standing and lying posture, using the HRV figures of both postures to cluster fatigue state embeds information on the dynamics of control responses. Such, HRV spectral analysis appears more sensitive and enlightening than time-domain HRV indices. The wealthier information provided by this spectral analysis should improve the monitoring of the adaptive training-recovery process in athletes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the tools proposed to assess the athlete's "fatigue," the analysis of heart rate variability (HRV) provides an indirect evaluation of the settings of autonomic control of heart activity. HRV analysis is performed through assessment of time-domain indices, the square root of the mean of the sum of the squares of differences between adjacent normal R-R intervals (RMSSD) measured during short (5 min) recordings in supine position upon awakening in the morning and particularly the logarithm of RMSSD (LnRMSSD) has been proposed as the most useful resting HRV indicator. However, if RMSSD can help the practitioner to identify a global "fatigue" level, it does not allow discriminating different types of fatigue. Recent results using spectral HRV analysis highlighted firstly that HRV profiles assessed in supine and standing positions are independent and complementary; and secondly that using these postural profiles allows the clustering of distinct sub-categories of "fatigue." Since, cardiovascular control settings are different in standing and lying posture, using the HRV figures of both postures to cluster fatigue state embeds information on the dynamics of control responses. Such, HRV spectral analysis appears more sensitive and enlightening than time-domain HRV indices. The wealthier information provided by this spectral analysis should improve the monitoring of the adaptive training-recovery process in athletes.