48 resultados para experimental chemotherapy
Resumo:
The therapeutic efficacy of BAL9141 (formerly Ro 63-9141), a novel cephalosporin with broad in vitro activity that also has activity against methicillin-resistant Staphylococcus aureus (MRSA), was investigated in rats with experimental endocarditis. The test organisms were homogeneously methicillin-resistant S. aureus strain COL transformed with the penicillinase-encoding plasmid pI524 (COL Bla+) and homogeneously methicillin-resistant, penicillinase-producing isolate P8-Hom, selected by serial exposure of parent strain P8 to methicillin. The MICs of BAL9141 for these organisms (2 mg/liter) were low, and BAL9141was bactericidal in time-kill curve studies after 24 h of exposure to either two, four, or eight times the MIC. Rats with experimental endocarditis were treated in a three-arm study with a continuous infusion of BAL5788 (formerly Ro 65-5788), a carbamate prodrug of BAL9141, or with amoxicillin-clavulanate or vancomycin. The rats were administered BAL9141 to obtain steady-state target levels of 20, 10, and 5 mg of per liter or were administered either 1.2 g of amoxicillin-clavulanate (ratio 5:1) every 6 h or 1 g of vancomycin every 12 h at changing flow rates to simulate the pharmacokinetics produced in humans by intermittent intravenous treatment. Treatment was started 12 h after bacterial challenge and lasted for 3 days. BAL9141 was successful in the treatment of experimental endocarditis due to either MRSA isolate COL Bla+ or MRSA isolate P8-Hom at the three targeted steady-state concentrations and sterilized >90% of cardiac vegetations (P < 0.005 versus controls; P < 0.05 versus amoxicillin-clavulanate and vancomycin treatment groups). These promising in vivo results with BAL9141 correlated with the high affinity of the drug for PBP 2a and its stability to penicillinase hydrolysis observed in vitro.
Resumo:
Recent observations demonstrated that fluconazole plus cyclosporine (Cy) synergistically killed Candida albicans in vitro. This combination was tested in rats with C. albicans experimental endocarditis. The MICs of fluconazole and Cy for the test organism were 0.25 and >10 mg/liter, respectively. Rats were treated for 5 days with either Cy, amphotericin B, fluconazole, or fluconazole-Cy. Although used at high doses, the peak concentrations of fluconazole in the serum of rats (up to 4.5 mg/liter) were compatible with high-dose fluconazole therapy in humans. On the other hand, Cy concentrations in serum (up to 4.5 mg/liter) were greater than recommended therapeutic levels. Untreated rats demonstrated massive pseudohyphal growth in both the vegetations and the kidneys. However, only the kidneys displayed concomitant polymorphonuclear infiltration. The therapeutic results reflected this dissociation. In the vegetations, only the fungicidal fluconazole-Cy combination significantly decreased fungal densities compared to all groups, including amphotericin B (P < 0.0001). In the kidneys, all regimens except the Cy regimen were effective, but fluconazole-Cy remained superior to amphotericin B and fluconazole alone in sterilizing the organs (P < 0.0001). While the mechanism responsible for the fluconazole-Cy interaction is hypothetical, this observation opens new perspectives for fungicidal combinations between azoles and other drugs.
Resumo:
For enterococcal implant-associated infections, the optimal treatment regimen has not been defined. We investigated the activity of daptomycin, vancomycin, and gentamicin (and their combinations) against Enterococcus faecalis in vitro and in a foreign-body infection model. Antimicrobial activity was investigated by time-kill and growth-related heat production studies (microcalorimetry) as well as with a guinea pig model using subcutaneously implanted cages. Infection was established by percutaneous injection of E. faecalis in the cage. Antibiotic treatment for 4 days was started 3 h after infection. Cages were removed 5 days after end of treatment to determine the cure rate. The MIC, the minimal bactericidal concentration (MBC) in the logarithmic phase, and the MBC in the stationary phase were 1.25, 5, and >20 μg/ml for daptomycin, 1, >64, and >64 μg/ml for vancomycin, and 16, 32, and 4 μg/ml for gentamicin, respectively. In vitro, gentamicin at subinhibitory concentrations improved the activity against E. faecalis when combined with daptomycin or vancomycin in the logarithmic and stationary phases. In the animal model, daptomycin cured 25%, vancomycin 17%, and gentamicin 50% of infected cages. In combination with gentamicin, the cure rate for daptomycin increased to 55% and that of vancomycin increased to 33%. In conclusion, daptomycin was more active than vancomycin against adherent E. faecalis, and its activity was further improved by the addition of gentamicin. Despite a short duration of infection (3 h), the cure rates did not exceed 55%, highlighting the difficulty of eradicating E. faecalis from implants already in the early stage of implant-associated infection.
Resumo:
The activity of garenoxacin was investigated in rats with experimental endocarditis due to staphylococci and viridans group streptococci (VGS). The staphylococci tested comprised one ciprofloxacin-susceptible and methicillin-susceptible Staphylococcus aureus (MSSA) isolate (isolate 1112), one ciprofloxacin-susceptible but methicillin-resistant S. aureus (MRSA) isolate (isolate P8), and one ciprofloxacin-resistant mutant (grlA) of P8 (isolate P8-4). The VGS tested comprised one penicillin-susceptible isolate and one penicillin-resistant isolate (Streptococcus oralis 226 and Streptococcus mitis 531, respectively). To simulate the kinetics of drugs in humans, rats were infused intravenously with garenoxacin every 24 h (peak and trough levels in serum, 6.1 and 1.0 mg/liter, respectively; area under the concentration-time curve [AUC], 63.4 mg. h/liter) or levofloxacin every 12 h (peak and trough levels in serum, 7.3 and 1.5 mg/liter, respectively; AUC, 55.6 mg. h/liter) for 3 or 5 days. Flucloxacillin, vancomycin, and ceftriaxone were used as control drugs. Garenoxacin, levofloxacin, flucloxacillin, and vancomycin sterilized >/=70% of the vegetations infected with both ciprofloxacin-susceptible staphylococcal isolates (P < 0.05 versus the results for the controls). Garenoxacin and vancomycin also sterilized 70% of the vegetations infected with ciprofloxacin-resistant MRSA isolate P8-4, whereas treatment with levofloxacin failed against this organism (cure rate, 0%; P < 0.05 versus the results obtained with the comparator drugs). Garenoxacin did not select for resistant derivatives in vivo. In contrast, levofloxacin selected for resistant variants in four of six rats infected with MRSA isolate P8-4. Garenoxacin sterilized 90% of the vegetations infected with both penicillin-susceptible and penicillin-resistant isolates of VGS. Levofloxacin sterilized only 22 and 40% of the vegetations infected with penicillin-susceptible S. oralis 226 and penicillin-resistant S. mitis 531, respectively. Ceftriaxone sterilized only 40% of those infected with penicillin-resistant S. mitis 531 (P < 0.05 versus the results obtained with garenoxacin). No quinolone-resistant VGS were detected. In all the experiments successful quinolone treatment was predicted by specific pharmacodynamic criteria (D. R. Andes and W. A. Craig, Clin. Infect. Dis. 27:47-50, 1998). The fact that the activity of garenoxacin was equal or superior to those of the standard comparators against staphylococci and VGS indicates that it is a potential alternative for the treatment of infections caused by such bacteria.
Resumo:
BACKGROUND: Both induction chemotherapy followed by irradiation and concurrent chemotherapy and radiotherapy have been reported as valuable alternatives to total laryngectomy in patients with advanced larynx or hypopharynx cancer. We report results of the randomized phase 3 trial 24954 from the European Organization for Research and Treatment of Cancer. METHODS: Patients with resectable advanced squamous cell carcinoma of the larynx (tumor stage T3-T4) or hypopharynx (T2-T4), with regional lymph nodes in the neck staged as N0-N2 and with no metastasis, were randomly assigned to treatment in the sequential (or control) or the alternating (or experimental) arm. In the sequential arm, patients with a 50% or more reduction in primary tumor size after two cycles of cisplatin and 5-fluorouracil received another two cycles, followed by radiotherapy (70 Gy total). In the alternating arm, a total of four cycles of cisplatin and 5-fluorouracil (in weeks 1, 4, 7, and 10) were alternated with radiotherapy with 20 Gy during the three 2-week intervals between chemotherapy cycles (60 Gy total). All nonresponders underwent salvage surgery and postoperative radiotherapy. The Kaplan-Meier method was used to obtain time-to-event data. RESULTS: The 450 patients were randomly assigned to treatment (224 to the sequential arm and 226 to the alternating arm). Median follow-up was 6.5 years. Survival with a functional larynx was similar in sequential and alternating arms (hazard ratio of death and/or event = 0.85, 95% confidence interval = 0.68 to 1.06), as were median overall survival (4.4 and 5.1 years, respectively) and median progression-free interval (3.0 and 3.1 years, respectively). Grade 3 or 4 mucositis occurred in 64 (32%) of the 200 patients in the sequential arm who received radiotherapy and in 47 (21%) of the 220 patients in the alternating arm. Late severe edema and/or fibrosis was observed in 32 (16%) patients in the sequential arm and in 25 (11%) in the alternating arm. CONCLUSIONS: Larynx preservation, progression-free interval, and overall survival were similar in both arms, as were acute and late toxic effects.
Resumo:
RP 59500 is a new injectable streptogramin composed of two synergistic components (quinupristin and dalfopristin) which are active against erythromycin-susceptible and -resistant gram-positive pathogens. The present experiments compared the therapeutic efficacy of RP 59500 with that of vancomycin against experimental endocarditis due to either of two erythromycin-susceptible or two constitutively erythromycin-resistant isolates of methicillin-resistant Staphylococcus aureus. RP 59500 had low MICs for the four test organisms as well as for 24 additional isolates (the MIC at which 90% of the isolates were inhibited was < 1 mg/liter) which were mostly inducibly (47%) or constitutively (39%) erythromycin resistant. Aortic endocarditis in rats was produced with catheter-induced vegetations. Three-day therapy was initiated 12 h after infection, and the drugs were delivered via a computerized pump, which permitted the mimicking of the drug kinetics produced in human serum by twice-daily intravenous injections of 7 mg of RP 59500 per kg of body weight or 1 g of vancomycin. Both antibiotics reduced vegetation bacterial titers to below detection levels in ca. 70% of animals infected with the erythromycin-susceptible isolates (P < 0.05 compared with titers in controls). Vancomycin was also effective against the constitutively resistant strains, but RP 59500 failed against these isolates. Further experiments proved that RP 59500 failures were related to the very short life span of dalfopristin in serum (< or = 2 h, compared with > or = 6 h for quinupristin), since successful treatment was restored by artificially prolonging the dalfopristin levels for 6 h. Thus, RP 59500 is a promising alternative to vancomycin against methicillin-resistant S. aureus infections, provided that pharmacokinetic parameters are adjusted to afford prolonged levels of both of its constituents in serum. This observation is also relevant to humans, in whom the life span of dalfopristin in serum is also shorter than that of quinupristin.
Resumo:
Increasing antimicrobial resistance reduces treatment options for implant-associated infections caused by methicillin-resistant Staphylococcus aureus (MRSA). We evaluated the activity of fosfomycin alone and in combination with vancomycin, daptomycin, rifampin, and tigecycline against MRSA (ATCC 43300) in a foreign-body (implantable cage) infection model. The MICs of the individual agents were as follows: fosfomycin, 1 μg/ml; daptomycin, 0.125 μg/ml; vancomycin, 1 μg/ml; rifampin, 0.04 μg/ml; and tigecycline, 0.125 μg/ml. Microcalorimetry showed synergistic activity of fosfomycin and rifampin at subinhibitory concentrations against planktonic and biofilm MRSA. In time-kill curves, fosfomycin exhibited time-dependent activity against MRSA with a reduction of 2.5 log10 CFU/ml at 128 × the MIC. In the animal model, planktonic bacteria in cage fluid were reduced by <1 log10 CFU/ml with fosfomycin and tigecycline, 1.7 log10 with daptomycin, 2.2 log10 with fosfomycin-tigecycline and fosfomycin-vancomycin, 3.8 log10 with fosfomycin-daptomycin, and >6.0 log10 with daptomycin-rifampin and fosfomycin-rifampin. Daptomycin-rifampin cured 67% of cage-associated infections and fosfomycin-rifampin cured 83%, whereas all single drugs (fosfomycin, daptomycin, and tigecycline) and rifampin-free fosfomycin combinations showed no cure of MRSA cage-associated infections. No emergence of fosfomycin resistance was observed in animals; however, a 4-fold increase in fosfomycin MIC (from 2 to 16 μg/ml) occurred in the fosfomycin-vancomycin group. In summary, the highest eradication of MRSA cage-associated infections was achieved with fosfomycin in combination with rifampin (83%). Fosfomycin may be used in combination with rifampin against MRSA implant-associated infections, but it cannot replace rifampin as an antibiofilm agent.
Resumo:
The formation of a 'tumor-associated vasculature', a process referred to as tumor angiogenesis, is a stromal reaction essential for tumor progression. Inhibition of tumor angiogenesis suppresses tumor growth in many experimental models, thereby indicating that tumor-associated vasculature may be a relevant target to inhibit tumor progression. Among the antiangiogenic molecules reported to date many are peptides and proteins. They include cytokines, chemokines, antibodies to vascular growth factors and growth factor receptors, soluble receptors, fragments derived from extracellular matrix proteins and small synthetic peptides. The polypeptide tumor necrosis factor (TNF, Beromun) was the first drug registered for the regional treatment of human cancer, whose mechanisms of action involved selective disruption of the tumor vasculature. More recently, bevacizumab (Avastin), an antibody against vascular endothelial growth factor (VEGF)-A, was approved as the first systemic antiangiogenic drug that had a significant impact on the survival of patients with advanced colorectal cancer, in combination with chemotherapy. Several additional peptides and antibodies with antiangiogenic activity are currently tested in clinical trials for their therapeutic efficacy. Thus, peptides, polypeptides and antibodies are emerging as leading molecules among the plethora of compounds with antiangiogenic activity. In this article, we will review some of these molecules and discuss their mechanism of action and their potential therapeutic use as anticancer agents in humans.
Resumo:
Levofloxacin was investigated against viridans group streptococci in vitro and in rats with experimental aortic endocarditis. The MIC(90)s of levofloxacin and ciprofloxacin for 20 independent isolates of such bacteria were 1 and 8 mg/L, respectively. Rats were infected with two types of organism: either fully susceptible to levofloxacin MIC < or = 0.5 mg/L) or borderline susceptible (MIC 1-2 mg/L). Fully levofloxacin-susceptible bacteria comprised one penicillin-susceptible (MIC 0.004 mg/L) Streptococcus gordonii, and one penicillin-tolerant as well as one intermediate penicillin-resistant (MIC 0.125 mg/L) isogenic strains. Borderline levofloxacin-susceptible bacteria comprised one penicillin-susceptible Streptococcus sanguis and one highly penicillin-resistant Streptococcus mitis (MIC 2 mg/L). Rats were treated for 5 days with drug dosages simulating the following treatments in humans: (i) levofloxacin 500 mg orally once a day (q24 h), (ii) levofloxacin 500 mg orally twice a day (q12 h), (iii) levofloxacin 1 g orally q24 h, (iv) ciprofloxacin 750 mg orally q12 h, and (v) ceftriaxone 2 g iv q24 h. Levofloxacin was equivalent or superior to ceftriaxone, and was successful in treating experimental endocarditis irrespective of penicillin resistance. Nevertheless, standard levofloxacin treatment equivalent to 500 mg q24 h in human was less effective than twice daily 500 mg or once daily 1 g doses against borderline-susceptible organisms. Ciprofloxacin, used as a negative control, was ineffective and selected for resistant isolates. This underlines the importance of MIC determinations when treating severe streptococcal infection with quinolones. In the case of borderline-susceptible pathogens, total daily doses of 1 g of levofloxacin should be considered.
Resumo:
Propionibacterium acnes is an important cause of orthopedic-implant-associated infections, for which the optimal treatment has not yet been determined. We investigated the activity of rifampin, alone and in combination, against planktonic and biofilm P. acnes in vitro and in a foreign-body infection model. The MIC and the minimal bactericidal concentration (MBC) were 0.007 and 4 μg/ml for rifampin, 1 and 4 μg/ml for daptomycin, 1 and 8 μg/ml for vancomycin, 1 and 2 μg/ml for levofloxacin, 0.03 and 16 μg/ml for penicillin G, 0.125 and 512 μg/ml for clindamycin, and 0.25 and 32 μg/ml for ceftriaxone. The P. acnes minimal biofilm eradication concentration (MBEC) was 16 μg/ml for rifampin; 32 μg/ml for penicillin G; 64 μg/ml for daptomycin and ceftriaxone; and ≥128 μg/ml for levofloxacin, vancomycin, and clindamycin. In the animal model, implants were infected by injection of 10⁹ CFU P. acnes in cages. Antimicrobial activity on P. acnes was investigated in the cage fluid (planktonic form) and on explanted cages (biofilm form). The cure rates were 4% for daptomycin, 17% for vancomycin, 0% for levofloxacin, and 36% for rifampin. Rifampin cured 63% of the infected cages in combination with daptomycin, 46% with vancomycin, and 25% with levofloxacin. While all tested antimicrobials showed good activity against planktonic P. acnes, for eradication of biofilms, rifampin was needed. In combination with rifampin, daptomycin showed higher cure rates than with vancomycin in this foreign-body infection model.
Resumo:
In the last two decades, anti-cancer vaccines have yielded disappointing clinical results despite the fact that high numbers of self/tumor-specific T cells can be elicited in immunized patients. Understanding the reasons behind this lack of efficacy is critical in order to design better treatment regimes. Recombinant lentivectors (rLVs) have been successfully used to induce antigen-specific T cells to foreign or mutated tumor antigens. Here, we show that rLV expressing a murine nonmutated self/tumor antigen efficiently primes large numbers of self/tumor-specific CD8(+) T cells. In spite of the large number of tumor-specific T cells, however, no anti-tumor activity could be measured in a therapeutic setting, in mice vaccinated with rLV. Accumulating evidence shows that, in the presence of malignancies, inhibition of T-cell activity may predominate overstimulation. Analysis of tumor-infiltrating lymphocytes revealed that specific anti-tumor CD8(+) T cells fail to produce cytokines and express high levels of inhibitory receptors such as programmed death (PD)-1. Association of active immunization with chemotherapy or antibodies that block inhibitory pathways often leads to better anti-tumor effects. We show here that combining rLV vaccination with either cyclophosphamide or PD-1 and PD-L1 blocking antibodies enhances rLV vaccination efficacy and improves anti-tumor immunity.
Resumo:
LB11058 is a new synthetic cephalosporin with good affinity for staphylococcal penicillin-binding protein 2a (PBP2a). LB11058 was tested in vitro and in rats with experimental aortic endocarditis against three methicillin-resistant Staphylococcus aureus (MRSA) strains, one penicillinase-negative strain (strain COL), and two penicillinase-producing strains (COL-Bla+ and P8-Hom). The MICs of LB11058 for the organisms were 1 mg/liter. The MICs of vancomycin and ceftriaxone were 1 and >/=64 mg/liter, respectively. In population analysis profiles, none of the MRSA strains grew at >/=2 mg of LB11058/liter. Rats with endocarditis were treated for 5 days. LB11058 was highly bound to serum proteins in rats (>/=98%). However, binding was saturable above a threshold of 250 mg/liter. Therefore, continuous concentrations of 250 mg/liter in serum were infused to ensure a free fraction (>/=5 mg/liter) above the drug's MIC for the entire infusion period. Control treatments included simulation of human serum kinetics produced by intravenous vancomycin (1 g twice daily, free drug concentration above MIC, >/=90% of infusion period) or ceftriaxone (2 g/24 h, free drug concentrations above the MIC, 0% of infusion period). LB11058 successfully treated 10 of 10 (100%) and 13 of 14 (93%) of rats infected with COL-Bla+ and P8-Hom, respectively. This was comparable to vancomycin (sterilization of 8 of 12 [66%] and 6 of 8 [75%] rats, respectively). Ceftriaxone was inactive. Low concentrations of LB11058 (5 and 10 mg/liter, continuously infused) in serum were ineffective, as predicted by the pharmacodynamic parameters. At appropriate doses, LB11058 was highly effective both in vitro and in vivo. This finding supports the development of this beta-lactam with high PBP2a affinity for the treatment of MRSA infections.
Resumo:
The circadian timing system controls cell cycle, apoptosis, drug bioactivation, and transport and detoxification mechanisms in healthy tissues. As a consequence, the tolerability of cancer chemotherapy varies up to several folds as a function of circadian timing of drug administration in experimental models. Best antitumor efficacy of single-agent or combination chemotherapy usually corresponds to the delivery of anticancer drugs near their respective times of best tolerability. Mathematical models reveal that such coincidence between chronotolerance and chronoefficacy is best explained by differences in the circadian and cell cycle dynamics of host and cancer cells, especially with regard circadian entrainment and cell cycle variability. In the clinic, a large improvement in tolerability was shown in international randomized trials where cancer patients received the same sinusoidal chronotherapy schedule over 24h as compared to constant-rate infusion or wrongly timed chronotherapy. However, sex, genetic background, and lifestyle were found to influence optimal chronotherapy scheduling. These findings support systems biology approaches to cancer chronotherapeutics. They involve the systematic experimental mapping and modeling of chronopharmacology pathways in synchronized cell cultures and their adjustment to mouse models of both sexes and distinct genetic background, as recently shown for irinotecan. Model-based personalized circadian drug delivery aims at jointly improving tolerability and efficacy of anticancer drugs based on the circadian timing system of individual patients, using dedicated circadian biomarker and drug delivery technologies.
Resumo:
Enterococcal implant-associated infections are difficult to treat because antibiotics generally lack activity against enterococcal biofilms. We investigated fosfomycin, rifampin, and their combinations against planktonic and adherent Enterococcus faecalis (ATCC 19433) in vitro and in a foreign-body infection model. The MIC/MBClog values were 32/>512 μg/ml for fosfomycin, 4/>64 μg/ml for rifampin, 1/2 μg/ml for ampicillin, 2/>256 μg/ml for linezolid, 16/32 μg/ml for gentamicin, 1/>64 μg/ml for vancomycin, and 1/5 μg/ml for daptomycin. In time-kill studies, fosfomycin was bactericidal at 8× and 16× MIC, but regrowth of resistant strains occurred after 24 h. With the exception of gentamicin, no complete inhibition of growth-related heat production was observed with other antimicrobials on early (3 h) or mature (24 h) biofilms. In the animal model, fosfomycin alone or in combination with daptomycin reduced planktonic counts by ≈4 log10 CFU/ml below the levels before treatment. Fosfomycin cleared planktonic bacteria from 74% of cage fluids (i.e., no growth in aspirated fluid) and eradicated biofilm bacteria from 43% of cages (i.e., no growth from removed cages). In combination with gentamicin, fosfomycin cleared 77% and cured 58% of cages; in combination with vancomycin, fosfomycin cleared 33% and cured 18% of cages; in combination with daptomycin, fosfomycin cleared 75% and cured 17% of cages. Rifampin showed no activity on planktonic or adherent E. faecalis, whereas in combination with daptomycin it cured 17% and with fosfomycin it cured 25% of cages. Emergence of fosfomycin resistance was not observed in vivo. In conclusion, fosfomycin showed activity against planktonic and adherent E. faecalis. Its role against enterococcal biofilms should be further investigated, especially in combination with rifampin and/or daptomycin treatment.