18 resultados para electron backscatter diffraction imaging
Resumo:
Correlative fluorescence and electron microscopy has become an indispensible tool for research in cell biology. The integrated Laser and Electron Microscope (iLEM) combines a Fluorescence Microscope (FM) and a Transmission Electron Microscope (TEM) within one set-up. This unique imaging tool allows for rapid identification of a region of interest with the FM, and subsequent high resolution TEM imaging of this area. Sample preparation is one of the major challenges in correlative microscopy of a single specimen; it needs to be apt for both FM and TEM imaging. For iLEM, the performance of the fluorescent probe should not be impaired by the vacuum of the TEM. In this technical note, we have compared the fluorescence intensity of six fluorescent probes in a dry, oxygen free environment relative to their performance in water. We demonstrate that the intensity of some fluorophores is strongly influenced by its surroundings, which should be taken into account in the design of the experiment. Furthermore, a freeze-substitution and Lowicryl resin embedding protocol is described that yields excellent membrane contrast in the TEM but prevents quenching of the fluorescent immuno-labeling. The embedding protocol results in a single specimen preparation procedure that performs well in both FM and TEM. Such procedures are not only essential for the iLEM, but also of great value to other correlative microscopy approaches.
Resumo:
Les échantillons biologiques ne s?arrangent pas toujours en objets ordonnés (cristaux 2D ou hélices) nécessaires pour la microscopie électronique ni en cristaux 3D parfaitement ordonnés pour la cristallographie rayons X alors que de nombreux spécimens sont tout simplement trop << gros D pour la spectroscopie NMR. C?est pour ces raisons que l?analyse de particules isolées par la cryo-microscopie électronique est devenue une technique de plus en plus importante pour déterminer la structure de macromolécules. Néanmoins, le faible rapport signal-sur-bruit ainsi que la forte sensibilité des échantillons biologiques natifs face au faisceau électronique restent deux parmi les facteurs limitant la résolution. La cryo-coloration négative est une technique récemment développée permettant l?observation des échantillons biologiques avec le microscope électronique. Ils sont observés à l?état vitrifié et à basse température, en présence d?un colorant (molybdate d?ammonium). Les avantages de la cryo-coloration négative sont étudiés dans ce travail. Les résultats obtenus révèlent que les problèmes majeurs peuvent êtres évités par l?utilisation de cette nouvelle technique. Les échantillons sont représentés fidèlement avec un SNR 10 fois plus important que dans le cas des échantillons dans l?eau. De plus, la comparaison de données obtenues après de multiples expositions montre que les dégâts liés au faisceau électronique sont réduits considérablement. D?autre part, les résultats exposés mettent en évidence que la technique est idéale pour l?analyse à haute résolution de macromolécules biologiques. La solution vitrifiée de molybdate d?ammonium entourant l?échantillon n?empêche pas l?accès à la structure interne de la protéine. Finalement, plusieurs exemples d?application démontrent les avantages de cette technique nouvellement développée.<br/><br/>Many biological specimens do not arrange themselves in ordered assemblies (tubular or flat 2D crystals) suitable for electron crystallography, nor in perfectly ordered 3D crystals for X-ray diffraction; many other are simply too large to be approached by NMR spectroscopy. Therefore, single-particles analysis has become a progressively more important technique for structural determination of large isolated macromolecules by cryo-electron microscopy. Nevertheless, the low signal-to-noise ratio and the high electron-beam sensitivity of biological samples remain two main resolution-limiting factors, when the specimens are observed in their native state. Cryo-negative staining is a recently developed technique that allows the study of biological samples with the electron microscope. The samples are observed at low temperature, in the vitrified state, but in presence of a stain (ammonium molybdate). In the present work, the advantages of this novel technique are investigated: it is shown that cryo-negative staining can generally overcome most of the problems encountered with cryo-electron microscopy of vitrified native suspension of biological particles. The specimens are faithfully represented with a 10-times higher SNR than in the case of unstained samples. Beam-damage is found to be considerably reduced by comparison of multiple-exposure series of both stained and unstained samples. The present report also demonstrates that cryo-negative staining is capable of high- resolution analysis of biological macromolecules. The vitrified stain solution surrounding the sample does not forbid the access to the interna1 features (ie. the secondary structure) of a protein. This finding is of direct interest for the structural biologist trying to combine electron microscopy and X-ray data. developed electron microscopy technique. Finally, several application examples demonstrate the advantages of this newly
Resumo:
Glucose is the primary source of energy for the brain but also an important source of building blocks for proteins, lipids, and nucleic acids. Little is known about the use of glucose for biosynthesis in tissues at the cellular level. We demonstrate that local cerebral metabolic activity can be mapped in mouse brain tissue by quantitatively imaging the biosynthetic products deriving from [U-(13)C]glucose metabolism using a combination of in situ electron microscopy and secondary ion mass-spectroscopy (NanoSIMS). Images of the (13)C-label incorporated into cerebral ultrastructure with ca. 100nm resolution allowed us to determine the timescale on which the metabolic products of glucose are incorporated into different cells, their sub-compartments and organelles. These were mapped in astrocytes and neurons in the different layers of the motor cortex. We see evidence for high metabolic activity in neurons via the nucleus (13)C enrichment. We observe that in all the major cell compartments, such as e.g. nucleus and Golgi apparatus, neurons incorporate substantially higher concentrations of (13)C-label than astrocytes.