22 resultados para efferent ductules
Resumo:
Multisensory and sensorimotor integrations are usually considered to occur in superior colliculus and cerebral cortex, but few studies proposed the thalamus as being involved in these integrative processes. We investigated whether the organization of the thalamocortical (TC) systems for different modalities partly overlap, representing an anatomical support for multisensory and sensorimotor interplay in thalamus. In 2 macaque monkeys, 6 neuroanatomical tracers were injected in the rostral and caudal auditory cortex, posterior parietal cortex (PE/PEa in area 5), and dorsal and ventral premotor cortical areas (PMd, PMv), demonstrating the existence of overlapping territories of thalamic projections to areas of different modalities (sensory and motor). TC projections, distinct from the ones arising from specific unimodal sensory nuclei, were observed from motor thalamus to PE/PEa or auditory cortex and from sensory thalamus to PMd/PMv. The central lateral nucleus and the mediodorsal nucleus project to all injected areas, but the most significant overlap across modalities was found in the medial pulvinar nucleus. The present results demonstrate the presence of thalamic territories integrating different sensory modalities with motor attributes. Based on the divergent/convergent pattern of TC and corticothalamic projections, 4 distinct mechanisms of multisensory and sensorimotor interplay are proposed.
Resumo:
The acute renal effects of hypoxemia and the ability of the co-administration of an angiotensin converting enzyme inhibitor (perindoprilat) and an adenosine receptor antagonist (theophylline) to prevent these effects were assessed in anesthetized and mechanically-ventilated rabbits. Renal blood flow (RBF) and glomerular filtration rate (GFR) were determined by the clearances of para-aminohippuric acid and inulin, respectively. Each animal acted as its own control. In 8 untreated rabbits, hypoxemia induced a significant drop in mean blood pressure (-12 +/- 2%), GFR (-16 +/- 3%) and RBF (-12 +/- 3%) with a concomitant increase in renal vascular resistance (RVR) (+ 18 +/- 5%), without changes in filtration fraction (FF) (-4 +/- 2%). These results suggest the occurrence of both pre- and postglomerular vasoconstriction during the hypoxemic stress. In 7 rabbits pretreated with intravenous perindoprilat (20 microg/kg), the hypoxemia-induced changes in RBF and RVR were prevented. FF decreased significantly (-18 +/- 2%), while the drop in GFR was partially blunted. These results could be explained by the inhibition of the angiotensin-mediated efferent vasoconstriction by perindoprilat. In 7 additional rabbits, co-administration of perindoprilat and theophylline (1 mg/kg) completely prevented the hypoxemia-induced changes in RBF (+ 11 +/- 3%) and GFR (+ 2 +/- 3%), while RVR decreased significantly (-14 +/- 3%). Since adenosine and angiotensin II were both shown to participate, at least in part, in the renal changes induced by hypoxemia, the beneficial effects of perindoprilat and theophylline in this model could be mediated by complementary actions of angiotensin II and adenosine on the renal vasculature.
Resumo:
In newborn kittens, cortical auditory areas (including AI and AII) send transitory projections to ipsi- and contralateral visual areas 17 and 18. These projections originate mainly from neurons in supragranular layers but also from a few in infragranular layers (Innocenti and Clarke: Dev. Brain Res. 14:143-148, '84; Clarke and Innocenti: J. Comp. Neurol. 251:1-22, '86). The postnatal development of these projections was studied with injections of anterograde tracers (wheat germ agglutinin-horseradish peroxidase [WGA-HRP]) in AI and AII and of retrograde tracers (WGA-HRP, fast blue, diamidino yellow, rhodamine-labeled latex beads) in areas 17 and 18. It was found that the projections are nearly completely eliminated in development, this, by the end of the first postnatal month. Until then, most of the transitory axons seem to remain confined to the white matter and the depth of layer VI; a few enter it further but do not appear to form terminal arbors. As for other transitory cortical projections the disappearance of the transitory axons seems not to involve death of their neurons of origin. In kittens older than 1 month and in normal adult cats, retrograde tracer injections restricted to, or including, areas 17 and 18 label only a few neurons in areas AI and AII. Unlike the situation in the kitten, nearly all of these are restricted to layers V and VI. A similar distribution of neurons projecting from auditory to visual areas is found in adult cats bilaterally enucleated at birth, which suggests that the postnatal elimination of the auditory-to-visual projection is independent of visual experience and more generally of information coming from the retina.
Resumo:
PURPOSE: The aim of this study was to investigate the effect of a single intravitreal (i.v.t.) injection of vasoactive intestinal peptide (VIP) loaded in rhodamine-conjugated liposomes (VIP-Rh-Lip) on experimental autoimmune uveoretinitis (EAU). METHODS: An i.v.t. injection of VIP-Rh-Lip, saline, VIP, or empty-(E)-Rh-Lip was performed simultaneously, either 6 or 12 days after footpad immunization with retinal S-antigen in Lewis rats. Clinical and histologic scores were determined. Immunohistochemistry and cytokine quantification by multiplex enzyme-linked immunosorbent assay were performed in ocular tissues. Systemic immune response was determined at day 20 postimmunization by measuring proliferation and cytokine secretion of cells from inguinal lymph nodes (ILNs) draining the immunization site, specific delayed-type hypersensitivity (DTH), and the serum concentration of cytokines. Ocular and systemic biodistribution of VIP-Rh-Lip was studied in normal and EAU rats by immunofluorescence. RESULTS: The i.v.t. injection of VIP-Rh-Lip performed during the afferent, but not the efferent, phase of the disease reduced clinical EAU and protected against retinal damage. No effect was observed after saline, E-Rh-Lip, or VIP injection. VIP-Rh-Lip and VIP were detected in intraocular macrophages and in lymphoid organs. In VIP-Rh-Lip-treated eyes, macrophages expressed transforming growth factor-beta2, low levels of major histocompatibility complex class II, and nitric oxide synthase-2. T-cells showed activated caspase-3 with the preservation of photoreceptors. Intraocular levels of interleukin (IL)-2, interferon-gamma (IFN-gamma), IL-17, IL-4, GRO/KC, and CCL5 were reduced with increased IL-13. At the systemic level, treatment reduced retinal soluble autoantigen lymphocyte proliferation, decreased IL-2, and increased IL-10 in ILN cells, and diminished specific DTH and serum concentration of IL-12 and IFN-gamma. CONCLUSIONS: An i.v.t. injection of VIP-Rh-Lip, performed during the afferent stage of immune response, reduced EAU pathology through the immunomodulation of intraocular macrophages and deviant stimulation of T-cells in ILN. Thus, the encapsulation of VIP within liposomes appears as an effective strategy to deliver VIP into the eye and is an efficient means of the prevention of EAU severity.
Resumo:
Neuronal death occurs naturally in the development of the vertebrate central nervous system, deleting large numbers of neurons at the time when afferent and efferent connections are being formed. It is these that regulate it, by means of anterograde and retrograde survival signals that depend on trophic molecules and electrical activity. Possible roles include the regulation of neuronal numbers (numerical matching) and the elimination of axonal targeting errors.
Resumo:
The low GFR of newborns is maintained by various factors including the renin-angiotensin system. We previously established the importance of angiotensin II in the newborn kidney, using the angiotensin-converting enzyme inhibitor perindoprilat. The present study was designed to complement these observations by evaluating the role of angiotensin-type 1 (AT(1)) receptors, using losartan, a specific AT(1)-receptor blocker. Increasing doses of losartan were infused into anesthetized, ventilated, newborn rabbits. Renal function and hemodynamic variables were assessed using inulin and para-aminohippuric acid clearances as markers of GFR and renal plasma flow, respectively. Losartan 0.1 mg/kg slightly decreased mean blood pressure (-11%) and increased diuresis (+22%). These changes can be explained by inhibition of the AT(1)-mediated vasoconstrictive and antidiuretic effects of angiotensin, and activation of vasodilating and diuretic AT(2) receptors widely expressed in the neonatal period. GFR and renal blood flow were not modified. Losartan 0.3 mg/kg decreased mean blood pressure significantly (-15%), probably by inhibiting systemic AT(1) receptors. GFR significantly decreased (-25%), whereas renal blood flow remained stable. The decrease in filtration fraction (-21%) indicates predominant efferent vasodilation. At 3 mg/kg, the systemic hypotensive effect of losartan was marked (mean blood pressure, -28%), with decreased GFR and renal blood flow (-57% and -51%, respectively), a stable filtration fraction, and an increase in renal vascular resistance by 124%. The renal response to this dose can be considered as reflex vasoconstriction of afferent and efferent arterioles, rather than specific receptor antagonism. We conclude that under physiologic conditions, the renin-angiotensin is critically involved in the maintenance of GFR in the immature kidney.
Resumo:
The adult dentate gyrus produces new neurons that morphologically and functionally integrate into the hippocampal network. In the adult brain, most excitatory synapses are ensheathed by astrocytic perisynaptic processes that regulate synaptic structure and function. However, these processes are formed during embryonic or early postnatal development and it is unknown whether astrocytes can also ensheathe synapses of neurons born during adulthood and, if so, whether they play a role in their synaptic transmission. Here, we used a combination of serial-section immuno-electron microscopy, confocal microscopy, and electrophysiology to examine the formation of perisynaptic processes on adult-born neurons. We found that the afferent and efferent synapses of newborn neurons are ensheathed by astrocytic processes, irrespective of the age of the neurons or the size of their synapses. The quantification of gliogenesis and the distribution of astrocytic processes on synapses formed by adult-born neurons suggest that the majority of these processes are recruited from pre-existing astrocytes. Furthermore, the inhibition of astrocytic glutamate re-uptake significantly reduced postsynaptic currents and increased paired-pulse facilitation in adult-born neurons, suggesting that perisynaptic processes modulate synaptic transmission on these cells. Finally, some processes were found intercalated between newly formed dendritic spines and potential presynaptic partners, suggesting that they may also play a structural role in the connectivity of new spines. Together, these results indicate that pre-existing astrocytes remodel their processes to ensheathe synapses of adult-born neurons and participate to the functional and structural integration of these cells into the hippocampal network.