39 resultados para distrofia muscular de Duchenne


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myoblast transfer therapy has been extensively studied for a wide range of clinical applications, such as tissue engineering for muscular loss, cardiac surgery or Duchenne Muscular Dystrophy treatment. However, this approach has been hindered by numerous limitations, including early myoblast death after injection and specific immune response after transplantation with allogenic cells. Different cell sources have been analyzed to overcome some of these limitations. The object of our study was to investigate the growth potential, characterization and integration in vivo of human primary fetal skeletal muscle cells. These data together show the potential for the creation of a cell bank to be used as a cell source for muscle cell therapy and tissue engineering. For this purpose, we developed primary muscular cell cultures from biopsies of human male thigh muscle from a 16-week-old fetus and from donors of 13 and 30 years old. We show that fetal myogenic cells can be successfully isolated and expanded in vitro from human fetal muscle biopsies, and that fetal cells have higher growth capacities when compared to young and adult cells. We confirm lineage specificity by comparing fetal muscle cells to fetal skin and bone cells in vitro by immunohistochemistry with desmin and 5.1 H11 antibodies. For the feasibility of the cell bank, we ensured that fetal muscle cells retained intrinsic characteristics after 5 years cryopreservation. Finally, human fetal muscle cells marked with PKH26 were injected in normal C57BL/6 mice and were found to be present up to 4 days. In conclusion we estimate that a human fetal skeletal muscle cell bank can be created for potential muscle cell therapy and tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Duchenne muscular dystrophy is an X-linked genetic disease caused by the absence of functional dystrophin. Pharmacological upregulation of utrophin, the autosomal homologue of dystrophin, offers a potential therapeutic approach to treat Duchenne patients. Full-length utrophin mRNA is transcribed from two alternative promoters, called A and B. In contrast to the utrophin promoter A, little is known about the factors regulating the activity of the utrophin promoter B. Computer analysis of this second promoter revealed the presence of several conserved binding motives for Ets-transcription factors. Using electrotransfer of cDNA into mouse muscles, we demonstrate that a genetically modified beta-subunit of the Ets-transcription factor GA-binding protein potently activates a utrophin promoter B reporter construct in innervated muscle fibers in vivo. These results make the GA-binding protein and the signaling cascade regulating its activity in muscle cells, potential targets for the pharmacological modulation of utrophin expression in Duchenne patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Loss-of-function mutations in calpain 3 have been shown to cause limb-girdle muscular dystrophy type 2A (LGMD2A), an autosomal recessive disorder that results in gradual wasting of the muscles of the hip and shoulder areas. Due to the inherent instability of calpain 3, recombinant expression of the full-length enzyme has not been possible, making in vitro analysis of specific LGMD2A-causing mutations difficult. However, because calpain 3 is highly similar in amino acid sequence to calpain 2, the recently solved crystal structure of full-length, Ca2+-bound, calpastatin-inhibited rat calpain 2 has allowed us to model calpain 3 as a Ca2+-bound homodimer. The model revealed three distinct areas of the enzyme that undergo a large conformational change upon Ca2+-binding. Located in these areas are several residues that undergo mutation to cause LGMD2A. We investigated the in vitro effects of six of these mutations by making the corresponding mutations in rat calpain 2. All six mutations examined in this study resulted in a decrease in enzyme activity. All but one of the mutations caused an increased rate of autoproteolytic degradation of the enzyme as witnessed by SDS-PAGE, indicating the decrease in enzyme activity is caused, at least in part, by an increase in the rate of autoproteolytic degradation. The putative in vivo effects of these mutations on calpain 3 activity are discussed with respect to their ability to cause LGMD2A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel monoclonal antibody, M7, is described, that reacts on Western blots with the large subunit of the neurofilament triplet proteins (NF-H) and with striated muscle myosin of Xenopus laevis. Enzymatically digested neurofilament and myosin proteins revealed different immunoreactive peptide fragments on Western blots. Therefore, the antibody must react with immunologically related epitopes common to both proteins. Immunohistochemistry showed staining of large and small axons in CNS and PNS, and nerves could be followed into endplate regions of skeletal muscles. These muscles were characterized by a striated immunostaining of the M-lines. Despite the crossreactivity of M7 with NF-H and muscle myosin, this antibody may be a tool to study innervation of muscle fibers, and to define changes in the neuromuscular organization during early development and metamorphosis of tadpoles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An 88 years old woman was admitted for muscular pain and weakness. She was under a treatment of simvastatin and was recently prescribed clarithromycin for a lung infection. The diagnosis of statin induced rhabdomyolysis by drug interaction was made. The evolution is good with eviction of the statin and aggressive hydratation. This case shows how important it is to know the risks factors and drug interactions predisposing to statin-induced myopathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integration without cytotoxic effects and long-term expression of a transgene constitutes a major challenge in gene therapy and biotechnology applications. In this context, transposons represent an attractive system for gene transfer because of their ability to promote efficient integration of a transgene in a variety of cell lines. However, the transgene integration can lead to insertional mutagenesis and/or unstable transgene expression by epigenetic modifications. These unwanted events may be limited by the use of chromatin control elements called MARs (matrix attachment regions). Indeed, the insertion of these DNA elements next to the transgene usually results in higher and more stable expression by maintaining transgene chromatin in an active configuration and preventing gene silencing. In this study, we tested if the inclusion of the MAR 1-68 in the piggyBac transposon system may lead to efficient and safer transgene integration and ensure reliable stable and long-term expression of a transgene. The MAR-containing transposon construct was tested in CHO cells, for biotechnology applications, and in mesoangioblast cells that can differentiate into muscle cells and are important candidates for potential stem cell therapies of myopathies. We showed that the addition of the MAR 1 -68 in the piggyBac transposon did not interfere with transposition, thereby maintaining high frequency of transgene integrations in these cells. Moreover, the MAR allowed higher transgene expression from fewer transposon integration events. We also found that enriched transgene-expressing cell populations could be obtained without the need of selection pressure. Since antibiotic-enforced selection protocols often result in a higher integrated copy number and mosaic expression patterns, this strategy could benefit many applications in which a low copy number of integrated transgenes and antibiotic-free conditions are desired. In addition, the intramuscular transplantation of mouse tibialis anterior muscles with mesoangioblasts containing the transposon led to widespread and sustained myofiber transgene expression after differentiation of these cells in vivo. These findings indicated that piggyBac vectors may provide a viable approach to achieve stable gene transfer in the context of Duchenne muscular dystrophy therapy. - L'intégration sans effets cytotoxiques et l'expression à long terme d'un transgène constituent un défi majeur en thérapie génique et en biotechnologie. Dans ce contexte, les transposons représentent un système attrayant pour le transfert de gènes en raison de leur capacité à promouvoir l'intégration efficace d'un transgène dans une variété de lignées cellulaires. Toutefois, l'intégration d'un transgène peut conduire à une mutagénèse insertionnelle et/ou à une expression instable due au silençage du transgène suite à des modifications épigénétiques. Ces événements indésirables de silençage génique peuvent être diminués par l'utilisation d'éléments de contrôle de la chromatine appelés MAR (matrix attachment region). En effet, l'insertion de ces éléments d'ADN à proximité du transgène se traduit généralement par une expression plus élevée et plus stable de celui-ci, en permettant le maintien d'une chromatine dans une configuration active autour du transgène et en empêchant l'inactivation du gène. Dans cette étude, nous avons testé si l'inclusion du MAR 1-68 dans le système transposon piggyBac peut améliorer l'efficacité d'intégration de façon sécuritaire et l'expression à long terme d'un transgène. Le transposon contenant l'élément MAR a été testé dans les cellules CHO, couramment utilisées en biotechnologie, et dans des cellules progénitrices appelées mésoangioblastes, qui peuvent se différencier en cellules musculaires, et qui constituent ainsi des candidats prometteurs pour la thérapie à partir de cellules souches de patients souffrant de myopathie. Nous avons montré que l'addition du MAR 1-68 dans le transposon piggyBac n'interfère pas avec la transposition et permet de maintenir une fréquence élevée d'intégration du transgène dans ces deux types cellulaires. De plus, il semble que cette association mène à une meilleure expression du transgène à partir de peu d'événements d'intégration du transposon. En outre, ces populations enrichies en cellules exprimant de façon stable le transgène ont pu être obtenues sans avoir recours à une pression de sélection. Etant donné que les protocoles de sélection basée sur l'utilisation d'antibiotiques conduisent souvent à un nombre plus élevé de copies intégrées et à la variégation de l'expression du transgène et qu'ils impliquent une longue culture in vitro, cette stratégie pourrait profiter à des applications pour lesquelles on souhaite un faible nombre de copies intégrées et/ou l'utilisation d'antibiotiques n'est pas souhaitable. De plus, la transplantation intramusculaire de mésoangioblastes contenant le transposon dans le muscle tibial antérieur de souris a conduit, après la différentiation de ces cellules in vivo, à une expression constante et étendue du transgène dans les myofibres. Ces résultats indiquent que les vecteurs piggyBac pourraient fournir une approche viable pour assurer un transfert de gènes stables dans le contexte d'un traitement de la dystrophic musculaire de Duchenne.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dystroglycan, which serves as a major extracellular matrix receptor in muscle and the central nervous system, requires extensive O-glycosylation to function. We identified a dystroglycan missense mutation (Thr192→Met) in a woman with limb-girdle muscular dystrophy and cognitive impairment. A mouse model harboring this mutation recapitulates the immunohistochemical and neuromuscular abnormalities observed in the patient. In vitro and in vivo studies showed that the mutation impairs the receptor function of dystroglycan in skeletal muscle and brain by inhibiting the post-translational modification, mediated by the glycosyltransferase LARGE, of the phosphorylated O-mannosyl glycans on α-dystroglycan that is required for high-affinity binding to laminin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calbindin D-28K is a calcium-binding protein which is expressed by subpopulations of dorsal root ganglion cells cultured from 10-day-old (E10) chick embryos. After 7 or 10 days of culture, more than 20% of the ganglion cells are immunostained by an anticalbindin-antiserum; however, after 14 days of culture, the proportion drops to 10%. This fall can be prevented by addition of muscle extract to cultures at 10 days. Thus the transitory expression of calbindin-immunoreactivity by responsive sensory neurons would be not only induced but also maintained by a differentiation factor of muscular origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Duchenne muscular dystrophy, the absence of dystrophin causes progressive muscle wasting and premature death. Excessive calcium influx is thought to initiate the pathogenic cascade, resulting in muscle cell death. Urocortins (Ucns) have protected muscle in several experimental paradigms. Herein, we demonstrate that daily s.c. injections of either Ucn 1 or Ucn 2 to 3-week-old dystrophic mdx(5Cv) mice for 2 weeks increased skeletal muscle mass and normalized plasma creatine kinase activity. Histological examination showed that Ucns remarkably reduced necrosis in the diaphragm and slow- and fast-twitch muscles. Ucns improved muscle resistance to mechanical stress provoked by repetitive tetanizations. Ucn 2 treatment resulted in faster kinetics of contraction and relaxation and a rightward shift of the force-frequency curve, suggesting improved calcium homeostasis. Ucn 2 decreased calcium influx into freshly isolated dystrophic muscles. Pharmacological manipulation demonstrated that the mechanism involved the corticotropin-releasing factor type 2 receptor, cAMP elevation, and activation of both protein kinase A and the cAMP-binding protein Epac. Moreover, both STIM1, the calcium sensor that initiates the assembly of store-operated channels, and the calcium-independent phospholipase A(2) that activates these channels were reduced in dystrophic muscle by Ucn 2. Altogether, our results demonstrate the high potency of Ucns for improving dystrophic muscle structure and function, suggesting that these peptides may be considered for treatment of Duchenne muscular dystrophy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Camurati-Engelmann disease is characterized by hyperostosis of the long bones and the skull, muscle atrophy, severe limb pain, and progressive joint contractures in some patients. It is caused by heterozygous mutations in the transforming growth factor β1 (TGFβ1) believed to result in improper folding of the latency-associated peptide domain of TGFβ1 and thus in increased or deregulated bioactivity. Losartan, an angiotensin II type 1 receptor antagonist, has been found to downregulate the expression of TGFβ type 1 and 2 receptors. Clinical trials with losartan have shown a benefit in Marfan syndrome, while trials are underway for Duchenne muscular dystrophy and other myopathies associated with TGFβ1 signaling. We hypothesized that due to its anti-TGFβ1 activity, losartan might be beneficial in Camurati-Engelmann disease. This report concerns a boy who presented at age 13 years with severe limb pain and difficulty in walking. Clinical and radiographic evaluation results were compatible with Camurati-Engelmann disease and the diagnosis was confirmed by mutation analysis (c.652C > T [p.Arg218Cys]). The boy underwent an experimental treatment with losartan at a dosage of 50 mg/day, orally. During the treatment period of 18 months, the intensity and frequency of limb pain decreased significantly (as shown by a pain diary), and muscle strength improved, allowing the boy to resume walking and climbing stairs. No obvious side effects were observed. We cautiously conclude that TGFβ1 inhibition with losartan deserves further evaluation in the clinical management of Camurati-Engelmann disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The autosomal recessive forms of limb-girdle muscular dystrophies are encoded by at least five distinct genes. The work performed towards the identification of two of these is summarized in this report. This success illustrates the growing importance of genetics in modern nosology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To describe a new entity of congenital muscular dystrophies caused by de novo LMNA mutations. METHODS: Fifteen patients presenting with a myopathy of onset in the first year of life were subjected to neurological and genetic evaluation. Histopathological and immunohistochemical analyses were performed for all patients. RESULTS: The 15 patients presented with muscle weakness in the first year of life, and all had de novo heterozygous LMNA mutations. Three of them had severe early-onset disease, no motor development, and the rest experienced development of a "dropped head" syndrome phenotype. Despite variable severity, there was a consistent clinical pattern. Patients typically presented with selective axial weakness and wasting of the cervicoaxial muscles. Limb involvement was predominantly proximal in upper extremities and distal in lower extremities. Talipes feet and a rigid spine with thoracic lordosis developed early. Proximal contractures appeared later, most often in lower limbs, sparing the elbows. Ten children required ventilatory support, three continuously through tracheotomy. Cardiac arrhythmias were observed in four of the oldest patients but were symptomatic only in one. Creatine kinase levels were mild to moderately increased. Muscle biopsies showed dystrophic changes in nine children and nonspecific myopathic changes in the remaining. Markedly atrophic fibers were common, most often type 1, and a few patients showed positive inflammatory markers. INTERPRETATION: The LMNA mutations identified appear to correlate with a relatively severe phenotype. Our results further broaden the spectrum of laminopathies and define a new disease entity that we suggest is best classified as a congenital muscular dystrophy (LMNA-related congenital muscular dystrophy, or L-CMD).