25 resultados para discrete choice models
Resumo:
We use panel data from the U. S. Health and Retirement Study, 1992-2002, to estimate the effect of self-assessed health limitations on the active labor market participation of older men. Self-assessments of health are likely to be endogenous to labor supply due to justification bias and individual-specific heterogeneity in subjective evaluations. We address both concerns. We propose a semiparametric binary choice procedure that incorporates nonadditive correlated individual-specific effects. Our estimation strategy identifies and estimates the average partial effects of health and functioning on labor market participation. The results indicate that poor health plays a major role in labor market exit decisions.
Resumo:
BACKGROUND: The criteria for choosing relevant cell lines among a vast panel of available intestinal-derived lines exhibiting a wide range of functional properties are still ill-defined. The objective of this study was, therefore, to establish objective criteria for choosing relevant cell lines to assess their appropriateness as tumor models as well as for drug absorption studies. RESULTS: We made use of publicly available expression signatures and cell based functional assays to delineate differences between various intestinal colon carcinoma cell lines and normal intestinal epithelium. We have compared a panel of intestinal cell lines with patient-derived normal and tumor epithelium and classified them according to traits relating to oncogenic pathway activity, epithelial-mesenchymal transition (EMT) and stemness, migratory properties, proliferative activity, transporter expression profiles and chemosensitivity. For example, SW480 represent an EMT-high, migratory phenotype and scored highest in terms of signatures associated to worse overall survival and higher risk of recurrence based on patient derived databases. On the other hand, differentiated HT29 and T84 cells showed gene expression patterns closest to tumor bulk derived cells. Regarding drug absorption, we confirmed that differentiated Caco-2 cells are the model of choice for active uptake studies in the small intestine. Regarding chemosensitivity we were unable to confirm a recently proposed association of chemo-resistance with EMT traits. However, a novel signature was identified through mining of NCI60 GI50 values that allowed to rank the panel of intestinal cell lines according to their drug responsiveness to commonly used chemotherapeutics. CONCLUSIONS: This study presents a straightforward strategy to exploit publicly available gene expression data to guide the choice of cell-based models. While this approach does not overcome the major limitations of such models, introducing a rank order of selected features may allow selecting model cell lines that are more adapted and pertinent to the addressed biological question.
Resumo:
BACKGROUND: Qualitative frameworks, especially those based on the logical discrete formalism, are increasingly used to model regulatory and signalling networks. A major advantage of these frameworks is that they do not require precise quantitative data, and that they are well-suited for studies of large networks. While numerous groups have developed specific computational tools that provide original methods to analyse qualitative models, a standard format to exchange qualitative models has been missing. RESULTS: We present the Systems Biology Markup Language (SBML) Qualitative Models Package ("qual"), an extension of the SBML Level 3 standard designed for computer representation of qualitative models of biological networks. We demonstrate the interoperability of models via SBML qual through the analysis of a specific signalling network by three independent software tools. Furthermore, the collective effort to define the SBML qual format paved the way for the development of LogicalModel, an open-source model library, which will facilitate the adoption of the format as well as the collaborative development of algorithms to analyse qualitative models. CONCLUSIONS: SBML qual allows the exchange of qualitative models among a number of complementary software tools. SBML qual has the potential to promote collaborative work on the development of novel computational approaches, as well as on the specification and the analysis of comprehensive qualitative models of regulatory and signalling networks.
Resumo:
Resume : Mieux comprendre les stromatolithes et les tapis microbiens est un sujet important en biogéosciences puisque cela aide à l'étude des premières formes de vie sur Terre, a mieux cerner l'écologie des communautés microbiennes et la contribution des microorganismes a la biominéralisation, et même à poser certains fondements dans les recherches en exobiologie. D'autre part, la modélisation est un outil puissant utilisé dans les sciences naturelles pour appréhender différents phénomènes de façon théorique. Les modèles sont généralement construits sur un système d'équations différentielles et les résultats sont obtenus en résolvant ce système. Les logiciels disponibles pour implémenter les modèles incluent les logiciels mathématiques et les logiciels généraux de simulation. L'objectif principal de cette thèse est de développer des modèles et des logiciels pour aider a comprendre, via la simulation, le fonctionnement des stromatolithes et des tapis microbiens. Ces logiciels ont été développés en C++ en ne partant d'aucun pré-requis de façon a privilégier performance et flexibilité maximales. Cette démarche permet de construire des modèles bien plus spécifiques et plus appropriés aux phénomènes a modéliser. Premièrement, nous avons étudié la croissance et la morphologie des stromatolithes. Nous avons construit un modèle tridimensionnel fondé sur l'agrégation par diffusion limitée. Le modèle a été implémenté en deux applications C++: un moteur de simulation capable d'exécuter un batch de simulations et de produire des fichiers de résultats, et un outil de visualisation qui permet d'analyser les résultats en trois dimensions. Après avoir vérifié que ce modèle peut en effet reproduire la croissance et la morphologie de plusieurs types de stromatolithes, nous avons introduit un processus de sédimentation comme facteur externe. Ceci nous a mené a des résultats intéressants, et permis de soutenir l'hypothèse que la morphologie des stromatolithes pourrait être le résultat de facteurs externes autant que de facteurs internes. Ceci est important car la classification des stromatolithes est généralement fondée sur leur morphologie, imposant que la forme d'un stromatolithe est dépendante de facteurs internes uniquement (c'est-à-dire les tapis microbiens). Les résultats avancés dans ce mémoire contredisent donc ces assertions communément admises. Ensuite, nous avons décidé de mener des recherches plus en profondeur sur les aspects fonctionnels des tapis microbiens. Nous avons construit un modèle bidimensionnel de réaction-diffusion fondé sur la simulation discrète. Ce modèle a été implémenté dans une application C++ qui permet de paramétrer et exécuter des simulations. Nous avons ensuite pu comparer les résultats de simulation avec des données du monde réel et vérifier que le modèle peut en effet imiter le comportement de certains tapis microbiens. Ainsi, nous avons pu émettre et vérifier des hypothèses sur le fonctionnement de certains tapis microbiens pour nous aider à mieux en comprendre certains aspects, comme la dynamique des éléments, en particulier le soufre et l'oxygène. En conclusion, ce travail a abouti à l'écriture de logiciels dédiés à la simulation de tapis microbiens d'un point de vue tant morphologique que fonctionnel, suivant deux approches différentes, l'une holistique, l'autre plus analytique. Ces logiciels sont gratuits et diffusés sous licence GPL (General Public License). Abstract : Better understanding of stromatolites and microbial mats is an important topic in biogeosciences as it helps studying the early forms of life on Earth, provides clues re- garding the ecology of microbial ecosystems and their contribution to biomineralization, and gives basis to a new science, exobiology. On the other hand, modelling is a powerful tool used in natural sciences for the theoretical approach of various phenomena. Models are usually built on a system of differential equations and results are obtained by solving that system. Available software to implement models includes mathematical solvers and general simulation software. The main objective of this thesis is to develop models and software able to help to understand the functioning of stromatolites and microbial mats. Software was developed in C++ from scratch for maximum performance and flexibility. This allows to build models much more specific to a phenomenon rather than general software. First, we studied stromatolite growth and morphology. We built a three-dimensional model based on diffusion-limited aggregation. The model was implemented in two C++ applications: a simulator engine, which can run a batch of simulations and produce result files, and a Visualization tool, which allows results to be analysed in three dimensions. After verifying that our model can indeed reproduce the growth and morphology of several types of stromatolites, we introduced a sedimentation process as an external factor. This lead to interesting results, and allowed to emit the hypothesis that stromatolite morphology may be the result of external factors as much as internal factors. This is important as stromatolite classification is usually based on their morphology, imposing that a stromatolite shape is dependant on internal factors only (i.e. the microbial mat). This statement is contradicted by our findings, Second, we decided to investigate deeper the functioning of microbial mats, We built a two-dimensional reaction-diffusion model based on discrete simulation, The model was implemented in a C++ application that allows setting and running simulations. We could then compare simulation results with real world data and verify that our model can indeed mimic the behaviour of some microbial mats. Thus, we have proposed and verified hypotheses regarding microbial mats functioning in order to help to better understand them, e.g. the cycle of some elements such as oxygen or sulfur. ln conclusion, this PhD provides a simulation software, dealing with two different approaches. This software is free and available under a GPL licence.
Resumo:
Abstract The main objective of this work is to show how the choice of the temporal dimension and of the spatial structure of the population influences an artificial evolutionary process. In the field of Artificial Evolution we can observe a common trend in synchronously evolv¬ing panmictic populations, i.e., populations in which any individual can be recombined with any other individual. Already in the '90s, the works of Spiessens and Manderick, Sarma and De Jong, and Gorges-Schleuter have pointed out that, if a population is struc¬tured according to a mono- or bi-dimensional regular lattice, the evolutionary process shows a different dynamic with respect to the panmictic case. In particular, Sarma and De Jong have studied the selection pressure (i.e., the diffusion of a best individual when the only selection operator is active) induced by a regular bi-dimensional structure of the population, proposing a logistic modeling of the selection pressure curves. This model supposes that the diffusion of a best individual in a population follows an exponential law. We show that such a model is inadequate to describe the process, since the growth speed must be quadratic or sub-quadratic in the case of a bi-dimensional regular lattice. New linear and sub-quadratic models are proposed for modeling the selection pressure curves in, respectively, mono- and bi-dimensional regu¬lar structures. These models are extended to describe the process when asynchronous evolutions are employed. Different dynamics of the populations imply different search strategies of the resulting algorithm, when the evolutionary process is used to solve optimisation problems. A benchmark of both discrete and continuous test problems is used to study the search characteristics of the different topologies and updates of the populations. In the last decade, the pioneering studies of Watts and Strogatz have shown that most real networks, both in the biological and sociological worlds as well as in man-made structures, have mathematical properties that set them apart from regular and random structures. In particular, they introduced the concepts of small-world graphs, and they showed that this new family of structures has interesting computing capabilities. Populations structured according to these new topologies are proposed, and their evolutionary dynamics are studied and modeled. We also propose asynchronous evolutions for these structures, and the resulting evolutionary behaviors are investigated. Many man-made networks have grown, and are still growing incrementally, and explanations have been proposed for their actual shape, such as Albert and Barabasi's preferential attachment growth rule. However, many actual networks seem to have undergone some kind of Darwinian variation and selection. Thus, how these networks might have come to be selected is an interesting yet unanswered question. In the last part of this work, we show how a simple evolutionary algorithm can enable the emrgence o these kinds of structures for two prototypical problems of the automata networks world, the majority classification and the synchronisation problems. Synopsis L'objectif principal de ce travail est de montrer l'influence du choix de la dimension temporelle et de la structure spatiale d'une population sur un processus évolutionnaire artificiel. Dans le domaine de l'Evolution Artificielle on peut observer une tendence à évoluer d'une façon synchrone des populations panmictiques, où chaque individu peut être récombiné avec tout autre individu dans la population. Déjà dans les année '90, Spiessens et Manderick, Sarma et De Jong, et Gorges-Schleuter ont observé que, si une population possède une structure régulière mono- ou bi-dimensionnelle, le processus évolutionnaire montre une dynamique différente de celle d'une population panmictique. En particulier, Sarma et De Jong ont étudié la pression de sélection (c-à-d la diffusion d'un individu optimal quand seul l'opérateur de sélection est actif) induite par une structure régulière bi-dimensionnelle de la population, proposant une modélisation logistique des courbes de pression de sélection. Ce modèle suppose que la diffusion d'un individu optimal suit une loi exponentielle. On montre que ce modèle est inadéquat pour décrire ce phénomène, étant donné que la vitesse de croissance doit obéir à une loi quadratique ou sous-quadratique dans le cas d'une structure régulière bi-dimensionnelle. De nouveaux modèles linéaires et sous-quadratique sont proposés pour des structures mono- et bi-dimensionnelles. Ces modèles sont étendus pour décrire des processus évolutionnaires asynchrones. Différentes dynamiques de la population impliquent strategies différentes de recherche de l'algorithme résultant lorsque le processus évolutionnaire est utilisé pour résoudre des problèmes d'optimisation. Un ensemble de problèmes discrets et continus est utilisé pour étudier les charactéristiques de recherche des différentes topologies et mises à jour des populations. Ces dernières années, les études de Watts et Strogatz ont montré que beaucoup de réseaux, aussi bien dans les mondes biologiques et sociologiques que dans les structures produites par l'homme, ont des propriétés mathématiques qui les séparent à la fois des structures régulières et des structures aléatoires. En particulier, ils ont introduit la notion de graphe sm,all-world et ont montré que cette nouvelle famille de structures possède des intéressantes propriétés dynamiques. Des populations ayant ces nouvelles topologies sont proposés, et leurs dynamiques évolutionnaires sont étudiées et modélisées. Pour des populations ayant ces structures, des méthodes d'évolution asynchrone sont proposées, et la dynamique résultante est étudiée. Beaucoup de réseaux produits par l'homme se sont formés d'une façon incrémentale, et des explications pour leur forme actuelle ont été proposées, comme le preferential attachment de Albert et Barabàsi. Toutefois, beaucoup de réseaux existants doivent être le produit d'un processus de variation et sélection darwiniennes. Ainsi, la façon dont ces structures ont pu être sélectionnées est une question intéressante restée sans réponse. Dans la dernière partie de ce travail, on montre comment un simple processus évolutif artificiel permet à ce type de topologies d'émerger dans le cas de deux problèmes prototypiques des réseaux d'automates, les tâches de densité et de synchronisation.
Resumo:
Occupational exposure modeling is widely used in the context of the E.U. regulation on the registration, evaluation, authorization, and restriction of chemicals (REACH). First tier tools, such as European Centre for Ecotoxicology and TOxicology of Chemicals (ECETOC) targeted risk assessment (TRA) or Stoffenmanager, are used to screen a wide range of substances. Those of concern are investigated further using second tier tools, e.g., Advanced REACH Tool (ART). Local sensitivity analysis (SA) methods are used here to determine dominant factors for three models commonly used within the REACH framework: ECETOC TRA v3, Stoffenmanager 4.5, and ART 1.5. Based on the results of the SA, the robustness of the models is assessed. For ECETOC, the process category (PROC) is the most important factor. A failure to identify the correct PROC has severe consequences for the exposure estimate. Stoffenmanager is the most balanced model and decision making uncertainties in one modifying factor are less severe in Stoffenmanager. ART requires a careful evaluation of the decisions in the source compartment since it constitutes ∼75% of the total exposure range, which corresponds to an exposure estimate of 20-22 orders of magnitude. Our results indicate that there is a trade off between accuracy and precision of the models. Previous studies suggested that ART may lead to more accurate results in well-documented exposure situations. However, the choice of the adequate model should ultimately be determined by the quality of the available exposure data: if the practitioner is uncertain concerning two or more decisions in the entry parameters, Stoffenmanager may be more robust than ART.
Resumo:
Cooperation and coordination are desirable behaviors that are fundamental for the harmonious development of society. People need to rely on cooperation with other individuals in many aspects of everyday life, such as teamwork and economic exchange in anonymous markets. However, cooperation may easily fall prey to exploitation by selfish individuals who only care about short- term gain. For cooperation to evolve, specific conditions and mechanisms are required, such as kinship, direct and indirect reciprocity through repeated interactions, or external interventions such as punishment. In this dissertation we investigate the effect of the network structure of the population on the evolution of cooperation and coordination. We consider several kinds of static and dynamical network topologies, such as Baraba´si-Albert, social network models and spatial networks. We perform numerical simulations and laboratory experiments using the Prisoner's Dilemma and co- ordination games in order to contrast human behavior with theoretical results. We show by numerical simulations that even a moderate amount of random noise on the Baraba´si-Albert scale-free network links causes a significant loss of cooperation, to the point that cooperation almost vanishes altogether in the Prisoner's Dilemma when the noise rate is high enough. Moreover, when we consider fixed social-like networks we find that current models of social networks may allow cooperation to emerge and to be robust at least as much as in scale-free networks. In the framework of spatial networks, we investigate whether cooperation can evolve and be stable when agents move randomly or performing Le´vy flights in a continuous space. We also consider discrete space adopting purposeful mobility and binary birth-death process to dis- cover emergent cooperative patterns. The fundamental result is that cooperation may be enhanced when this migration is opportunistic or even when agents follow very simple heuristics. In the experimental laboratory, we investigate the issue of social coordination between indi- viduals located on networks of contacts. In contrast to simulations, we find that human players dynamics do not converge to the efficient outcome more often in a social-like network than in a random network. In another experiment, we study the behavior of people who play a pure co- ordination game in a spatial environment in which they can move around and when changing convention is costly. We find that each convention forms homogeneous clusters and is adopted by approximately half of the individuals. When we provide them with global information, i.e., the number of subjects currently adopting one of the conventions, global consensus is reached in most, but not all, cases. Our results allow us to extract the heuristics used by the participants and to build a numerical simulation model that agrees very well with the experiments. Our findings have important implications for policymakers intending to promote specific, desired behaviors in a mobile population. Furthermore, we carry out an experiment with human subjects playing the Prisoner's Dilemma game in a diluted grid where people are able to move around. In contrast to previous results on purposeful rewiring in relational networks, we find no noticeable effect of mobility in space on the level of cooperation. Clusters of cooperators form momentarily but in a few rounds they dissolve as cooperators at the boundaries stop tolerating being cheated upon. Our results highlight the difficulties that mobile agents have to establish a cooperative environment in a spatial setting without a device such as reputation or the possibility of retaliation. i.e. punishment. Finally, we test experimentally the evolution of cooperation in social networks taking into ac- count a setting where we allow people to make or break links at their will. In this work we give particular attention to whether information on an individual's actions is freely available to poten- tial partners or not. Studying the role of information is relevant as information on other people's actions is often not available for free: a recruiting firm may need to call a job candidate's refer- ences, a bank may need to find out about the credit history of a new client, etc. We find that people cooperate almost fully when information on their actions is freely available to their potential part- ners. Cooperation is less likely, however, if people have to pay about half of what they gain from cooperating with a cooperator. Cooperation declines even further if people have to pay a cost that is almost equivalent to the gain from cooperating with a cooperator. Thus, costly information on potential neighbors' actions can undermine the incentive to cooperate in dynamical networks.
Resumo:
Ingvaldsen et al. comment on our study assessing global fish interchanges between the North Atlantic and Pacific oceans for more than 500 species during the entire 21st century. They propose that discrepancies between our model projections and observed data for cod in the Barents Sea are the result of the choice of Atmosphere-Ocean General Circulation Models (AOGCMs). We address this assertion here, re-running the cod model with additional observation data from the Barents Sea1, 3, and show that the lack of open-access, archived data for the Barents Sea was the primary cause of local prediction mismatch. This finding recalls the importance of systematic deposit of biodiversity data in global databases
Resumo:
Notre consommation en eau souterraine, en particulier comme eau potable ou pour l'irrigation, a considérablement augmenté au cours des années. De nombreux problèmes font alors leur apparition, allant de la prospection de nouvelles ressources à la remédiation des aquifères pollués. Indépendamment du problème hydrogéologique considéré, le principal défi reste la caractérisation des propriétés du sous-sol. Une approche stochastique est alors nécessaire afin de représenter cette incertitude en considérant de multiples scénarios géologiques et en générant un grand nombre de réalisations géostatistiques. Nous rencontrons alors la principale limitation de ces approches qui est le coût de calcul dû à la simulation des processus d'écoulements complexes pour chacune de ces réalisations. Dans la première partie de la thèse, ce problème est investigué dans le contexte de propagation de l'incertitude, oú un ensemble de réalisations est identifié comme représentant les propriétés du sous-sol. Afin de propager cette incertitude à la quantité d'intérêt tout en limitant le coût de calcul, les méthodes actuelles font appel à des modèles d'écoulement approximés. Cela permet l'identification d'un sous-ensemble de réalisations représentant la variabilité de l'ensemble initial. Le modèle complexe d'écoulement est alors évalué uniquement pour ce sousensemble, et, sur la base de ces réponses complexes, l'inférence est faite. Notre objectif est d'améliorer la performance de cette approche en utilisant toute l'information à disposition. Pour cela, le sous-ensemble de réponses approximées et exactes est utilisé afin de construire un modèle d'erreur, qui sert ensuite à corriger le reste des réponses approximées et prédire la réponse du modèle complexe. Cette méthode permet de maximiser l'utilisation de l'information à disposition sans augmentation perceptible du temps de calcul. La propagation de l'incertitude est alors plus précise et plus robuste. La stratégie explorée dans le premier chapitre consiste à apprendre d'un sous-ensemble de réalisations la relation entre les modèles d'écoulement approximé et complexe. Dans la seconde partie de la thèse, cette méthodologie est formalisée mathématiquement en introduisant un modèle de régression entre les réponses fonctionnelles. Comme ce problème est mal posé, il est nécessaire d'en réduire la dimensionnalité. Dans cette optique, l'innovation du travail présenté provient de l'utilisation de l'analyse en composantes principales fonctionnelles (ACPF), qui non seulement effectue la réduction de dimensionnalités tout en maximisant l'information retenue, mais permet aussi de diagnostiquer la qualité du modèle d'erreur dans cet espace fonctionnel. La méthodologie proposée est appliquée à un problème de pollution par une phase liquide nonaqueuse et les résultats obtenus montrent que le modèle d'erreur permet une forte réduction du temps de calcul tout en estimant correctement l'incertitude. De plus, pour chaque réponse approximée, une prédiction de la réponse complexe est fournie par le modèle d'erreur. Le concept de modèle d'erreur fonctionnel est donc pertinent pour la propagation de l'incertitude, mais aussi pour les problèmes d'inférence bayésienne. Les méthodes de Monte Carlo par chaîne de Markov (MCMC) sont les algorithmes les plus communément utilisés afin de générer des réalisations géostatistiques en accord avec les observations. Cependant, ces méthodes souffrent d'un taux d'acceptation très bas pour les problèmes de grande dimensionnalité, résultant en un grand nombre de simulations d'écoulement gaspillées. Une approche en deux temps, le "MCMC en deux étapes", a été introduite afin d'éviter les simulations du modèle complexe inutiles par une évaluation préliminaire de la réalisation. Dans la troisième partie de la thèse, le modèle d'écoulement approximé couplé à un modèle d'erreur sert d'évaluation préliminaire pour le "MCMC en deux étapes". Nous démontrons une augmentation du taux d'acceptation par un facteur de 1.5 à 3 en comparaison avec une implémentation classique de MCMC. Une question reste sans réponse : comment choisir la taille de l'ensemble d'entrainement et comment identifier les réalisations permettant d'optimiser la construction du modèle d'erreur. Cela requiert une stratégie itérative afin que, à chaque nouvelle simulation d'écoulement, le modèle d'erreur soit amélioré en incorporant les nouvelles informations. Ceci est développé dans la quatrième partie de la thèse, oú cette méthodologie est appliquée à un problème d'intrusion saline dans un aquifère côtier. -- Our consumption of groundwater, in particular as drinking water and for irrigation, has considerably increased over the years and groundwater is becoming an increasingly scarce and endangered resource. Nofadays, we are facing many problems ranging from water prospection to sustainable management and remediation of polluted aquifers. Independently of the hydrogeological problem, the main challenge remains dealing with the incomplete knofledge of the underground properties. Stochastic approaches have been developed to represent this uncertainty by considering multiple geological scenarios and generating a large number of realizations. The main limitation of this approach is the computational cost associated with performing complex of simulations in each realization. In the first part of the thesis, we explore this issue in the context of uncertainty propagation, where an ensemble of geostatistical realizations is identified as representative of the subsurface uncertainty. To propagate this lack of knofledge to the quantity of interest (e.g., the concentration of pollutant in extracted water), it is necessary to evaluate the of response of each realization. Due to computational constraints, state-of-the-art methods make use of approximate of simulation, to identify a subset of realizations that represents the variability of the ensemble. The complex and computationally heavy of model is then run for this subset based on which inference is made. Our objective is to increase the performance of this approach by using all of the available information and not solely the subset of exact responses. Two error models are proposed to correct the approximate responses follofing a machine learning approach. For the subset identified by a classical approach (here the distance kernel method) both the approximate and the exact responses are knofn. This information is used to construct an error model and correct the ensemble of approximate responses to predict the "expected" responses of the exact model. The proposed methodology makes use of all the available information without perceptible additional computational costs and leads to an increase in accuracy and robustness of the uncertainty propagation. The strategy explored in the first chapter consists in learning from a subset of realizations the relationship between proxy and exact curves. In the second part of this thesis, the strategy is formalized in a rigorous mathematical framework by defining a regression model between functions. As this problem is ill-posed, it is necessary to reduce its dimensionality. The novelty of the work comes from the use of functional principal component analysis (FPCA), which not only performs the dimensionality reduction while maximizing the retained information, but also allofs a diagnostic of the quality of the error model in the functional space. The proposed methodology is applied to a pollution problem by a non-aqueous phase-liquid. The error model allofs a strong reduction of the computational cost while providing a good estimate of the uncertainty. The individual correction of the proxy response by the error model leads to an excellent prediction of the exact response, opening the door to many applications. The concept of functional error model is useful not only in the context of uncertainty propagation, but also, and maybe even more so, to perform Bayesian inference. Monte Carlo Markov Chain (MCMC) algorithms are the most common choice to ensure that the generated realizations are sampled in accordance with the observations. Hofever, this approach suffers from lof acceptance rate in high dimensional problems, resulting in a large number of wasted of simulations. This led to the introduction of two-stage MCMC, where the computational cost is decreased by avoiding unnecessary simulation of the exact of thanks to a preliminary evaluation of the proposal. In the third part of the thesis, a proxy is coupled to an error model to provide an approximate response for the two-stage MCMC set-up. We demonstrate an increase in acceptance rate by a factor three with respect to one-stage MCMC results. An open question remains: hof do we choose the size of the learning set and identify the realizations to optimize the construction of the error model. This requires devising an iterative strategy to construct the error model, such that, as new of simulations are performed, the error model is iteratively improved by incorporating the new information. This is discussed in the fourth part of the thesis, in which we apply this methodology to a problem of saline intrusion in a coastal aquifer.
Resumo:
OBJECTIVE: We examined the influence of clinical, radiologic, and echocardiographic characteristics on antithrombotic choice in patients with cryptogenic stroke (CS) and patent foramen ovale (PFO), hypothesizing that features suggestive of paradoxical embolism might lead to greater use of anticoagulation. METHODS: The Risk of Paradoxical Embolism Study combined 12 databases to create the largest dataset of patients with CS and known PFO status. We used generalized linear mixed models with a random effect of component study to explore whether anticoagulation was preferentially selected based on the following: (1) younger age and absence of vascular risk factors, (2) "high-risk" echocardiographic features, and (3) neuroradiologic findings. RESULTS: A total of 1,132 patients with CS and PFO treated with anticoagulation or antiplatelets were included. Overall, 438 participants (39%) were treated with anticoagulation with a range (by database) of 22% to 54%. Treatment choice was not influenced by age or vascular risk factors. However, neuroradiologic findings (superficial or multiple infarcts) and high-risk echocardiographic features (large shunts, shunt at rest, and septal hypermobility) were predictors of anticoagulation use. CONCLUSION: Both antithrombotic regimens are widely used for secondary stroke prevention in patients with CS and PFO. Radiologic and echocardiographic features were strongly associated with treatment choice, whereas conventional vascular risk factors were not. Prior observational studies are likely to be biased by confounding by indication.