131 resultados para depth estimation
Resumo:
Because environmental conditions within a given basin are different for each season and at different water depth, knowledge of the life history and depth distribution of target species is important for environmental and palaeoenvironmental interpretations based on ostracod species assemblages and/or the geochemical compositions of their valves. In order to determine the distribution of species with depth as well as the life history of species from Lake Geneva, a one year sampling campaign of living ostracods was conducted at five sites (2, 5, 13, 33 and 70 m water depth) on a monthly basis in the Petit-Lac (western basin of Lake Geneva, Switzerland). Based on the results, the different species can be classified into three groups. Littoral taxa are found at 2 and 5 m water depth and include, in decreasing numbers of individuals, Cypridopsis vidua (O. F.Müller, 1776), Pseudocandona compressa (Koch, 1838), Limnocythere inopinata (Baird, 1843), Herpetocypris reptans (Baird, 1835), Potamocypris smaragdina (Vávra, 1891), Potamocypris similis (G. W. Müller, 1912), Plesiocypridopsis newtoni (Brady & Robertson, 1870), Prionocypris zenkeri (Chyzer & Toth, 1858) and Ilyocypris sp. Brady & Norman, 1889. Sublittoral species are found in a majority at 13 m water depth and to a lesser extend at 33 m water depth and include, in decreasing numbers of individuals, Fabaeformiscandona caudata (Kaufmann, 1900), Limnocytherina sanctipatricii, Candona candida (O. F. Müller, 1776) and Isocypris beauchampi (Paris, 1920). Profundal species are found equally at 13, 33 and 70 m water depth and includes, in decreasing numbers of individuals, Cytherissa lacustris (Sars, 1863), Candona neglecta Sars, 1887 and Cypria lacustris Lilljeborg, 1890. The occurrence of Limnocytherina sanctipatricii (Brady & Robertson, 1869) is restricted from late winter to late spring when temperatures are low, while C. vidua, L. inopinata, P. smaragdina, P. similis, P. newtoni and Ilyocypris sp. occur predominantly from spring to early autumn when temperatures are high. Individuals of C. neglecta, C. candida, F. caudata, P. compressa, C. lacustris, H. reptans and Cp. lacustris occur throughout the year with juveniles and adults occurring during the same period (C. neglecta at 70 m, C. lacustris at 13, 33 and 70 m, and H. reptans at 2, 5 and 13 m water depth) or with juveniles occurring during a different period of the year than adults (C. neglecta at 13 and 33 m and C. candida, F. caudata and P. compressa at their respective depth of occurrence). Among the environmental parameters investigated, an estimate of the relationship between ostracod autoecology and environmental parameters suggests that in the Petit-Lac: (i) water temperature and substrate characteristics are important factors controlling the distribution of species with depth, (ii) water temperature is also important for determining the timing of species development and, hence, its specific life history, and (iii) water oxygen and sedimentary organic matter content is less important compared to the other environmental parameter monitored.
Resumo:
Restriction site-associated DNA sequencing (RADseq) provides researchers with the ability to record genetic polymorphism across thousands of loci for nonmodel organisms, potentially revolutionizing the field of molecular ecology. However, as with other genotyping methods, RADseq is prone to a number of sources of error that may have consequential effects for population genetic inferences, and these have received only limited attention in terms of the estimation and reporting of genotyping error rates. Here we use individual sample replicates, under the expectation of identical genotypes, to quantify genotyping error in the absence of a reference genome. We then use sample replicates to (i) optimize de novo assembly parameters within the program Stacks, by minimizing error and maximizing the retrieval of informative loci; and (ii) quantify error rates for loci, alleles and single-nucleotide polymorphisms. As an empirical example, we use a double-digest RAD data set of a nonmodel plant species, Berberis alpina, collected from high-altitude mountains in Mexico.
Resumo:
QUESTIONS UNDER STUDY AND PRINCIPLES: Estimating glomerular filtration rate (GFR) in hospitalised patients with chronic kidney disease (CKD) is important for drug prescription but it remains a difficult task. The purpose of this study was to investigate the reliability of selected algorithms based on serum creatinine, cystatin C and beta-trace protein to estimate GFR and the potential added advantage of measuring muscle mass by bioimpedance. In a prospective unselected group of patients hospitalised in a general internal medicine ward with CKD, GFR was evaluated using inulin clearance as the gold standard and the algorithms of Cockcroft, MDRD, Larsson (cystatin C), White (beta-trace) and MacDonald (creatinine and muscle mass by bioimpedance). 69 patients were included in the study. Median age (interquartile range) was 80 years (73-83); weight 74.7 kg (67.0-85.6), appendicular lean mass 19.1 kg (14.9-22.3), serum creatinine 126 μmol/l (100-149), cystatin C 1.45 mg/l (1.19-1.90), beta-trace protein 1.17 mg/l (0.99-1.53) and GFR measured by inulin 30.9 ml/min (22.0-43.3). The errors in the estimation of GFR and the area under the ROC curves (95% confidence interval) relative to inulin were respectively: Cockcroft 14.3 ml/min (5.55-23.2) and 0.68 (0.55-0.81), MDRD 16.3 ml/min (6.4-27.5) and 0.76 (0.64-0.87), Larsson 12.8 ml/min (4.50-25.3) and 0.82 (0.72-0.92), White 17.6 ml/min (11.5-31.5) and 0.75 (0.63-0.87), MacDonald 32.2 ml/min (13.9-45.4) and 0.65 (0.52-0.78). Currently used algorithms overestimate GFR in hospitalised patients with CKD. As a consequence eGFR targeted prescriptions of renal-cleared drugs, might expose patients to overdosing. The best results were obtained with the Larsson algorithm. The determination of muscle mass by bioimpedance did not provide significant contributions.
Resumo:
BACKGROUND: Estimated glomerular filtration rate (eGFR) is an important diagnostic instrument in clinical practice. The National Kidney Foundation-Kidney Disease Quality Initiative (NKF-KDOQI) guidelines do not recommend using formulas developed for adults to estimate GFR in children; however, studies confirming these recommendations are scarce. The aim of our study was to evaluate the accuracy of the new Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula, the Modification of Diet in Renal Disease (MDRD) formula, and the Cockcroft-Gault formula in children with various stages of chronic kidney disease (CKD). METHODS: A total of 550 inulin clearance (iGFR) measurements for 391 children were analyzed. The cohort was divided into three groups: group 1, with iGFR >90 ml/min/1.73 m(2); group 2, with iGFR between 60 and 90 ml/min/1.73 m(2); group 3, with iGFR of <60 ml/min/1.73 m(2). RESULTS: All formulas overestimate iGFR with a significant bias (p < 0.001), present poor accuracies, and have poor Spearman correlations. For an accuracy of 10 %, only 11, 6, and 27 % of the eGFRs are accurate when using the MDRD, CKD-EPI, and Cockcroft-Gault formulas, respectively. For an accuracy of 30 %, these formulas do not reach the NKF-KDOQI guidelines for validation, with only 25, 20, and 70 % of the eGFRs, respectively, being accurate. CONCLUSIONS: Based on our results, the performances of all of these formulas are unreliable for eGFR in children across all CKD stages and cannot therefore be applied in the pediatric population group.
Resumo:
Introduction: Osteoporosis (OP) is a systemic skeletal disease characterized by a low bone mineral density (BMD) and a micro-architectural (MA) deterioration. Clinical risk factors (CRF) are often used as a MA approximation. MA is yet evaluable in daily practice by the Trabecular Bone Score (TBS) measure. TBS is a novel grey-level texture measurement reflecting bone micro-architecture based on the use of experimental variograms of 2D projection images. TBS is very simple to obtain, by reanalyzing a lumbar DXA-scan. TBS has proven to have diagnosis and prognosis value, partially independent of CRF and BMD. The aim of the OsteoLaus cohort is to combine in daily practice the CRF and the information given by DXA (BMD, TBS and vertebral fracture assessment (VFA)) to better identify women at high fracture risk. Method: The OsteoLaus cohort (1400 women 50 to 80 years living in Lausanne, Switzerland) started in 2010. This study is derived from the cohort COLAUS who started in Lausanne in 2003. The main goals of COLAUS is to obtain information on the epidemiology and genetic determinants of cardiovascular risk in 6700 men and women. CRF for OP, bone ultrasound of the heel, lumbar spine and hip BMD, VFA by DXA and MA evaluation by TBS are recorded in OsteoLaus. Preliminary results are reported. Results: We included 631 women: mean age 67.4±6.7 y, BMI 26.1±4.6, mean lumbar spine BMD 0.943±0.168 (T-score -1.4 SD), TBS 1.271±0.103. As expected, correlation between BMD and site matched TBS is low (r2=0.16). Prevalence of VFx grade 2/3, major OP Fx and all OP Fx is 8.4%, 17.0% and 26.0% respectively. Age- and BMI-adjusted ORs (per SD decrease) are 1.8 (1.2- 2.5), 1.6 (1.2-2.1), 1.3 (1.1-1.6) for BMD for the different categories of fractures and 2.0 (1.4-3.0), 1.9 (1.4-2.5), 1.4 (1.1-1.7) for TBS respectively. Only 32 to 37% of women with OP Fx have a BMD < -2.5 SD or a TBS < 1.200. If we combine a BMD < -2.5 SD or a TBS < 1.200, 54 to 60% of women with an osteoporotic Fx are identified. Conclusion: As in the already published studies, these preliminary results confirm the partial independence between BMD and TBS. More importantly, a combination of TBS subsequent to BMD increases significantly the identification of women with prevalent OP Fx which would have been miss-classified by BMD alone. For the first time we are able to have complementary information about fracture (VFA), density (BMD), micro- and macro architecture (TBS & HAS) from a simple, low ionizing radiation and cheap device: DXA. Such complementary information is very useful for the patient in the daily practice and moreover will likely have an impact on cost effectiveness analysis.
Resumo:
A survey was undertaken among Swiss occupational health and safety specialists in 2004 to identify uses, difficulties, and possible developments of exposure models. Occupational hygienists (121), occupational physicians (169), and safety specialists (95) were surveyed with an in depth questionnaire. Results obtained indicate that models are not used very much in practice in Switzerland and are reserved to research groups focusing on specific topics. However, various determinants of exposure are often considered important by professionals (emission rate, work activity), and in some cases recorded and used (room parameters, operator activity). These parameters cannot be directly included in present models. Nevertheless, more than half of the occupational hygienists think that it is important to develop quantitative exposure models. Looking at research institutions, there is, however, a big interest in the use of models to solve problems which are difficult to address with direct measurements; i. e. retrospective exposure assessment for specific clinical cases and prospective evaluation for new situations or estimation of the effect of selected parameters. In a recent study about cases of acutepulmonary toxicity following water proofing spray exposure, exposure models have been used to reconstruct exposure of a group of patients. Finally, in the context of exposure prediction, it is also important to report about a measurement database existing in Switzerland since 1991. [Authors]
Resumo:
Pulse wave velocity (PWV) is a surrogate of arterial stiffness and represents a non-invasive marker of cardiovascular risk. The non-invasive measurement of PWV requires tracking the arrival time of pressure pulses recorded in vivo, commonly referred to as pulse arrival time (PAT). In the state of the art, PAT is estimated by identifying a characteristic point of the pressure pulse waveform. This paper demonstrates that for ambulatory scenarios, where signal-to-noise ratios are below 10 dB, the performance in terms of repeatability of PAT measurements through characteristic points identification degrades drastically. Hence, we introduce a novel family of PAT estimators based on the parametric modeling of the anacrotic phase of a pressure pulse. In particular, we propose a parametric PAT estimator (TANH) that depicts high correlation with the Complior(R) characteristic point D1 (CC = 0.99), increases noise robustness and reduces by a five-fold factor the number of heartbeats required to obtain reliable PAT measurements.
Resumo:
Introduction: Estimation of the time since death based on the gastric content is still a controversy subject. Many studies have been achieved leaving the same incertitude: the intra- and inter-individual variability. Aim: After a homicidal case where a specialized gastroenterologist was cited to estimate the time of death based on the gastric contents and his experience in clinical practice. Consequently we decided to make a review of the scientific literature to see if that method was more reliable nowadays. Material and methods: We chose articles from 1979 that describe the estimation of the gastric emptying rate according to several factors and the forensic articles about the estimation of the time of death in relation with the gastric content. Results: Most of the articles cited by the specialized gastroenterologist were studies about living healthy people and the effects of several factors (medication, supine versus upside-down position, body mass index or different type of food). Forensic articles frequently concluded that the estimation of the time since death by analyzing the gastric content can be used but not as the unique method. Conclusion: Estimation of the time since death by analyze of the gastric contents is a method that can be used nowadays. But it cannot be the only method as the inter- and intra-individual variability remains an important bias.
Resumo:
Over the past decade, significant interest has been expressed in relating the spatial statistics of surface-based reflection ground-penetrating radar (GPR) data to those of the imaged subsurface volume. A primary motivation for this work is that changes in the radar wave velocity, which largely control the character of the observed data, are expected to be related to corresponding changes in subsurface water content. Although previous work has indeed indicated that the spatial statistics of GPR images are linked to those of the water content distribution of the probed region, a viable method for quantitatively analyzing the GPR data and solving the corresponding inverse problem has not yet been presented. Here we address this issue by first deriving a relationship between the 2-D autocorrelation of a water content distribution and that of the corresponding GPR reflection image. We then show how a Bayesian inversion strategy based on Markov chain Monte Carlo sampling can be used to estimate the posterior distribution of subsurface correlation model parameters that are consistent with the GPR data. Our results indicate that if the underlying assumptions are valid and we possess adequate prior knowledge regarding the water content distribution, in particular its vertical variability, this methodology allows not only for the reliable recovery of lateral correlation model parameters but also for estimates of parameter uncertainties. In the case where prior knowledge regarding the vertical variability of water content is not available, the results show that the methodology still reliably recovers the aspect ratio of the heterogeneity.
Resumo:
Hyaline fibromatosis syndrome is an autosomal recessive disease caused by mutations in ANTXR2, a gene involved in extracellular matrix homeostasis. Sixty percent of patients carry frameshift mutations at a mutational hotspot in exon 13. We show in patient cells that these mutations lead to low ANTXR2 mRNA and undetectable protein levels. Ectopic expression of the proteins encoded by the mutated genes reveals that a two base insertion leads to the synthesis of a protein that is rapidly targeted to the ER-associated degradation pathway due to the modified structure of the cytosolic tail, which instead of being hydrophilic and highly disordered as in wild type ANTXR2, is folded and exposes hydrophobic patches. In contrast, one base insertion leads to a truncated protein that properly localizes to the plasma membrane and retains partial function. We next show that targeting the nonsense mediated mRNA decay pathway in patient cells leads to a rescue of ANTXR2 protein in patients carrying one base insertion but not in those carrying two base insertions. This study highlights the importance of in-depth analysis of the molecular consequences of specific patient mutations, which even when they occur at the same site can have drastically different consequences.
Resumo:
Decreasing perinatal morbidity and mortality is one of the main goals of obstetrics. Prognosis of preterm births depends on gestational age and birthweight. Multidisciplinary management is discussed with the parents according to these two parameters. In other circumstances, a suspected macrosomy will influence the management of the last weeks of pregnancy. Induction of labor or Cesarean delivery will be considered to avoid shoulder dystocia, brachial plexus injury or perinatal asphyxia. Birthweight needs to be estimated with accuracy, and this article describes the efficiency of various ultrasound weight estimation formulae for small and large fetuses.
Resumo:
A ubiquitous assessment of swimming velocity (main metric of the performance) is essential for the coach to provide a tailored feedback to the trainee. We present a probabilistic framework for the data-driven estimation of the swimming velocity at every cycle using a low-cost wearable inertial measurement unit (IMU). The statistical validation of the method on 15 swimmers shows that an average relative error of 0.1 ± 9.6% and high correlation with the tethered reference system (rX,Y=0.91 ) is achievable. Besides, a simple tool to analyze the influence of sacrum kinematics on the performance is provided.