83 resultados para database solution
Resumo:
InterPro, an integrated documentation resource of protein families, domains and functional sites, was created in 1999 as a means of amalgamating the major protein signature databases into one comprehensive resource. PROSITE, Pfam, PRINTS, ProDom, SMART and TIGRFAMs have been manually integrated and curated and are available in InterPro for text- and sequence-based searching. The results are provided in a single format that rationalises the results that would be obtained by searching the member databases individually. The latest release of InterPro contains 5629 entries describing 4280 families, 1239 domains, 95 repeats and 15 post-translational modifications. Currently, the combined signatures in InterPro cover more than 74% of all proteins in SWISS-PROT and TrEMBL, an increase of nearly 15% since the inception of InterPro. New features of the database include improved searching capabilities and enhanced graphical user interfaces for visualisation of the data. The database is available via a webserver (http://www.ebi.ac.uk/interpro) and anonymous FTP (ftp://ftp.ebi.ac.uk/pub/databases/interpro).
Resumo:
We present and validate BlastR, a method for efficiently and accurately searching non-coding RNAs. Our approach relies on the comparison of di-nucleotides using BlosumR, a new log-odd substitution matrix. In order to use BlosumR for comparison, we recoded RNA sequences into protein-like sequences. We then showed that BlosumR can be used along with the BlastP algorithm in order to search non-coding RNA sequences. Using Rfam as a gold standard, we benchmarked this approach and show BlastR to be more sensitive than BlastN. We also show that BlastR is both faster and more sensitive than BlastP used with a single nucleotide log-odd substitution matrix. BlastR, when used in combination with WU-BlastP, is about 5% more accurate than WU-BlastN and about 50 times slower. The approach shown here is equally effective when combined with the NCBI-Blast package. The software is an open source freeware available from www.tcoffee.org/blastr.html.
Resumo:
A new and original reagent based on the use of highly fluorescent cadmium telluride (CdTe) quantum dots (QDs) in aqueous solution is proposed to detect weak fingermarks in blood on non-porous surfaces. To assess the efficiency of this approach, comparisons were performed with one of the most efficient blood reagents on non-porous surfaces, Acid Yellow 7 (AY7). To this end, four non-porous surfaces were studied, i.e. glass, transparent polypropylene, black polyethylene, and aluminium foil. To evaluate the sensitivity of both reagents, sets of depleted fingermarks were prepared, using the same finger, initially soaked with blood, which was then successively applied on the same surface without recharging it with blood or latent secretions. The successive marks were then cut in halves and the halves treated separately with each reagent. The results showed that QDs were equally efficient to AY7 on glass, polyethylene and polypropylene surfaces, and were superior to AY7 on aluminium. The use of QDs in new, sensitive and highly efficient latent and blood mark detection techniques appears highly promising. Health and safety issues related to the use of cadmium are also discussed. It is suggested that applying QDs in aqueous solution (and not as a dry dusting powder) considerably lowers the toxicity risks.
Resumo:
The Eukaryotic Promoter Database (EPD) is an annotated non-redundant collection of eukaryotic POL II promoters, experimentally defined by a transcription start site (TSS). There may be multiple promoter entries for a single gene. The underlying experimental evidence comes from journal articles and, starting from release 73, from 5' ESTs of full-length cDNA clones used for so-called in silico primer extension. Access to promoter sequences is provided by pointers to TSS positions in nucleotide sequence entries. The annotation part of an EPD entry includes a description of the type and source of the initiation site mapping data, links to other biological databases and bibliographic references. EPD is structured in a way that facilitates dynamic extraction of biologically meaningful promoter subsets for comparative sequence analysis. Web-based interfaces have been developed that enable the user to view EPD entries in different formats, to select and extract promoter sequences according to a variety of criteria and to navigate to related databases exploiting different cross-references. Tools for analysing sequence motifs around TSSs defined in EPD are provided by the signal search analysis server. EPD can be accessed at http://www.epd. isb-sib.ch.
Resumo:
The multiscale finite volume (MsFV) method has been developed to efficiently solve large heterogeneous problems (elliptic or parabolic); it is usually employed for pressure equations and delivers conservative flux fields to be used in transport problems. The method essentially relies on the hypothesis that the (fine-scale) problem can be reasonably described by a set of local solutions coupled by a conservative global (coarse-scale) problem. In most cases, the boundary conditions assigned for the local problems are satisfactory and the approximate conservative fluxes provided by the method are accurate. In numerically challenging cases, however, a more accurate localization is required to obtain a good approximation of the fine-scale solution. In this paper we develop a procedure to iteratively improve the boundary conditions of the local problems. The algorithm relies on the data structure of the MsFV method and employs a Krylov-subspace projection method to obtain an unconditionally stable scheme and accelerate convergence. Two variants are considered: in the first, only the MsFV operator is used; in the second, the MsFV operator is combined in a two-step method with an operator derived from the problem solved to construct the conservative flux field. The resulting iterative MsFV algorithms allow arbitrary reduction of the solution error without compromising the construction of a conservative flux field, which is guaranteed at any iteration. Since it converges to the exact solution, the method can be regarded as a linear solver. In this context, the schemes proposed here can be viewed as preconditioned versions of the Generalized Minimal Residual method (GMRES), with a very peculiar characteristic that the residual on the coarse grid is zero at any iteration (thus conservative fluxes can be obtained).
Resumo:
Teaching and research are organised differently between subject domains: attempts to construct typologies of higher education institutions, however, often do not include quantitative indicators concerning subject mix which would allow systematic comparisons of large numbers of higher education institutions among different countries, as the availability of data for such indicators is limited. In this paper, we present an exploratory approach for the construction of such indicators. The database constructed in the AQUAMETH project, which includes also data disaggregated at the disciplinary level, is explored with the aim of understanding patterns of subject mix. For six European countries, an exploratory and descriptive analysis of staff composition divided in four large domains (medical sciences, engineering and technology, natural sciences and social sciences and humanities) is performed, which leads to a classification distinguishing between specialist and generalist institutions. Among the latter, a further distinction is made based on the presence or absence of a medical department. Preliminary exploration of this classification and its comparison with other indicators show the influence of long term dynamics on the subject mix of individual higher education institutions, but also underline disciplinary differences, for example regarding student to staff ratios, as well as national patterns, for example regarding the number of PhD degrees per 100 undergraduate students. Despite its many limitations, this exploratory approach allows defining a classification of higher education institutions that accounts for a large share of differences between the analysed higher education institutions.
Resumo:
Access to online repositories for genomic and associated "-omics" datasets is now an essential part of everyday research activity. It is important therefore that the Tuberculosis community is aware of the databases and tools available to them online, as well as for the database hosts to know what the needs of the research community are. One of the goals of the Tuberculosis Annotation Jamboree, held in Washington DC on March 7th-8th 2012, was therefore to provide an overview of the current status of three key Tuberculosis resources, TubercuList (tuberculist.epfl.ch), TB Database (www.tbdb.org), and Pathosystems Resource Integration Center (PATRIC, www.patricbrc.org). Here we summarize some key updates and upcoming features in TubercuList, and provide an overview of the PATRIC site and its online tools for pathogen RNA-Seq analysis.
Resumo:
Since 2008, Intelligence units of six states of the western part of Switzerland have been sharing a common database for the analysis of high volume crimes. On a daily basis, events reported to the police are analysed, filtered and classified to detect crime repetitions and interpret the crime environment. Several forensic outcomes are integrated in the system such as matches of traces with persons, and links between scenes detected by the comparison of forensic case data. Systematic procedures have been settled to integrate links assumed mainly through DNA profiles, shoemarks patterns and images. A statistical outlook on a retrospective dataset of series from 2009 to 2011 of the database informs for instance on the number of repetition detected or confirmed and increased by forensic case data. Time needed to obtain forensic intelligence in regard with the type of marks treated, is seen as a critical issue. Furthermore, the underlying integration process of forensic intelligence into the crime intelligence database raised several difficulties in regards of the acquisition of data and the models used in the forensic databases. Solutions found and adopted operational procedures are described and discussed. This process form the basis to many other researches aimed at developing forensic intelligence models.
Resumo:
Familial searching consists of searching for a full profile left at a crime scene in a National DNA Database (NDNAD). In this paper we are interested in the circumstance where no full match is returned, but a partial match is found between a database member's profile and the crime stain. Because close relatives share more of their DNA than unrelated persons, this partial match may indicate that the crime stain was left by a close relative of the person with whom the partial match was found. This approach has successfully solved important crimes in the UK and the USA. In a previous paper, a model, which takes into account substructure and siblings, was used to simulate a NDNAD. In this paper, we have used this model to test the usefulness of familial searching and offer guidelines for pre-assessment of the cases based on the likelihood ratio. Siblings of "persons" present in the simulated Swiss NDNAD were created. These profiles (N=10,000) were used as traces and were then compared to the whole database (N=100,000). The statistical results obtained show that the technique has great potential confirming the findings of previous studies. However, effectiveness of the technique is only one part of the story. Familial searching has juridical and ethical aspects that should not be ignored. In Switzerland for example, there are no specific guidelines to the legality or otherwise of familial searching. This article both presents statistical results, and addresses criminological and civil liberties aspects to take into account risks and benefits of familial searching.
Resumo:
The SwissBioisostere database (http://www.swissbioisostere.ch) contains information on molecular replacements and their performance in biochemical assays. It is meant to provide researchers in drug discovery projects with ideas for bioisosteric modifications of their current lead molecule, as well as to give interested scientists access to the details on particular molecular replacements. As of August 2012, the database contains 21 293 355 datapoints corresponding to 5 586 462 unique replacements that have been measured in 35 039 assays against 1948 molecular targets representing 30 target classes. The accessible data were created through detection of matched molecular pairs and mining bioactivity data in the ChEMBL database. The SwissBioisostere database is hosted by the Swiss Institute of Bioinformatics and available via a web-based interface.
Resumo:
Background: The variety of DNA microarray formats and datasets presently available offers an unprecedented opportunity to perform insightful comparisons of heterogeneous data. Cross-species studies, in particular, have the power of identifying conserved, functionally important molecular processes. Validation of discoveries can now often be performed in readily available public data which frequently requires cross-platform studies.Cross-platform and cross-species analyses require matching probes on different microarray formats. This can be achieved using the information in microarray annotations and additional molecular biology databases, such as orthology databases. Although annotations and other biological information are stored using modern database models ( e. g. relational), they are very often distributed and shared as tables in text files, i.e. flat file databases. This common flat database format thus provides a simple and robust solution to flexibly integrate various sources of information and a basis for the combined analysis of heterogeneous gene expression profiles.Results: We provide annotationTools, a Bioconductor-compliant R package to annotate microarray experiments and integrate heterogeneous gene expression profiles using annotation and other molecular biology information available as flat file databases. First, annotationTools contains a specialized set of functions for mining this widely used database format in a systematic manner. It thus offers a straightforward solution for annotating microarray experiments. Second, building on these basic functions and relying on the combination of information from several databases, it provides tools to easily perform cross-species analyses of gene expression data.Here, we present two example applications of annotationTools that are of direct relevance for the analysis of heterogeneous gene expression profiles, namely a cross-platform mapping of probes and a cross-species mapping of orthologous probes using different orthology databases. We also show how to perform an explorative comparison of disease-related transcriptional changes in human patients and in a genetic mouse model.Conclusion: The R package annotationTools provides a simple solution to handle microarray annotation and orthology tables, as well as other flat molecular biology databases. Thereby, it allows easy integration and analysis of heterogeneous microarray experiments across different technological platforms or species.