81 resultados para dairy barn builders
Resumo:
Individuals need to adapt to their local environment in order to survive. When selection pressures differ in local populations, polymorphism can evolve. Colour polymorphism is one of the most obvious polymorphisms since it is readily observable. Different sources of colouration exist, but melanin-based colouration is one of the most common in birds. The melanocortin system produces this colouration and because the melanocortin system has pleiotropic effects on behavioural and physiological traits, it is a good candidate to be an underlying mechanism to explain the maintenance of colour polymorphism. In this thesis I studied three different raptors which all display melanin-based colouration; barn owls (Tyto alba), tawny owls (Strix aluco) and Eurasian kestrels (Falco tinnunculus). The main question was if there was a relationship between melanin-based colouration and individual behavioural differences. The underlying hypothesis is that colour could be a signal of certain adaptive traits. Our goal was to find evolutionary explanations for the persistence of colour polymorphism. I found that nestling kestrels and barn owls differ in anti-predatory behaviour, with respect to their melanic colouration (chapters 1 and 2). Darker individuals show less reaction to human handling, but in kestrels aggression and colouration are related in opposite ways than in barn owls. More reddish barn owls travel greater distances in natal dispersal and this behaviour is repeatable between parents and same sex offspring (chapter 3). Dark reddish tawny owls defend their nests more intensely against intruders and appear to suffer less from nest predation (chapter 4). Finally I show that polymorphism in the Melanocortin 1 receptor gene (MC1R), which is strongly correlated with reddish colouration in the barn owl, is related to natal dispersal distance, providing a first indication for a genetic basis of the relation between this behaviour and colouration (chapter 5). My results demonstrate a clear link between melanin-based colouration and animal personality traits. I demonstrated this relation in three different species, which shows there is most likely a general underlying mechanism responsible. Different predation pressures might have shaped the reactions to predation, but also differences in sex-related colouration. Male-like and female-like colouration might signal more or less aggressive behaviour. Fluctuating environmental conditions might cause different individual strategies to produce equal reproductive success. The melanocortin system with its pleiotropic effects might be an underlying mechanism, as suggested by the results from the genetic polymorphism, the similar results found in these three species and by the similar relations reported in other species. This thesis demonstrates that colouration and individual differences are correlated and it provides the first glimpse of an underlying system. We can now conduct a more directed search for underlying mechanisms and evolutionary explanations with the use of quantitative genetic methods.
Resumo:
Feathers confer protection against biophysical agents and determine flying ability. The geometry and arrangement of the barbs, together with the keratin and pigments deposited in the feathers, determine the mechanical stability of the vane, and its stiffness and resistance to abrasive agents. In colour-polymorphic species, individuals display alternative colour morphs, which can be associated with different foraging strategies. Each morph may therefore require specific flying abilities, and their feathers may be exposed to different abrasive agents. Feathers of differently coloured individuals may thus have a specific structure, and colour pigments may help resist abrasive agents and improve stiffness. We examined these predictions in the barn owl (Tyto alba), a species for which the ventral body side varies from white to dark reddish pheomelanic, and in the number and size of black spots located at the tip of the feathers. White and reddish birds show different foraging strategies, and the size of black feather spots is associated with several phenotypic attributes. We found that birds displaying a darker reddish coloration on the ventral body side deposit more melanin pigments in their remiges, which also have fewer barbs. This suggests that wear resistance increases with darkness, whereas feathers of lighter coloured birds may bend less easily. Accordingly, individuals displaying a lighter reddish coloration on the ventral body side, and those displaying larger black spots, displayed more black transverse bars on their remiges: as larger-spotted individuals are heavier and longer-winged birds also have more transverse bars, these bars may reduce feather bending when flying. We conclude that differently coloured individuals produce wing feathers of different strengths to adopt alternative behavioural and life history strategies
Resumo:
Spatial variation in the pattern of natural selection can promote local adaptation and genetic differentiation between populations. Because heritable melanin-based ornaments can signal resistance to environmentally mediated elevation in glucocorticoids, to oxidative stress and parasites, populations may vary in the mean degree of melanic coloration if selection on these phenotypic aspects varies geographically. Within a population of Swiss barn owls (Tyto alba), the size of eumelanic spots is positively associated with survival, immunity and resistance to stress, but it is yet unknown whether Tyto species that face stressful environments evolved towards a darker eumelanic plumage. Because selection regimes vary along environmental gradients, we examined whether melanin-based traits vary clinally and are expressed to a larger extent in the tropics where parasites are more abundant than in temperate zones. To this end, we considered 39 barn owl species distributed worldwide. Barn owl species living in the tropics displayed larger eumelanic spots than those found in temperate zones. This was, however, verified in the northern hemisphere only. Parasites being particularly abundant in the tropics, they may promote the evolution of darker eumelanic ornaments.
Resumo:
Conflicts among siblings are widespread and their resolution involves complex physical and communication tools. Observations in the barn owl Tyto alba showed that siblings vocally communicate in the absence of parents to negotiate priority of access to the impending food resources that parents will bring. In the present paper, we hypothesize and provide correlative evidence that after a parent brought a food item to their progeny, sibling competition involves vocal sib-sib communication. A food item takes a long time to be entirely consumed, and hence siblings continue to compete over prey monopolization even after parents gave a food item to a single offspring. When physical competition is pronounced and thereby the risk of prey theft is high, the individual that received a prey item consumes it in a concealed place. Concomitantly, nestlings vocalize intensely probably to indicate their motivation to siblings to not share their food item, since this vocal behaviour was particularly frequent in younger individuals for which the risk of being robbed is higher than in their older siblings. Furthermore, nestlings consumed more rapidly a food item when their siblings vocalized intensely presumably because the intensity of siblings' vocalizations is associated with a risk of prey theft. Our correlative study suggests that sibling competition favoured the evolution of sib-sib communication under a wide range of situations.
Resumo:
When competing over parental resources, young animals may be typically selfish to the point of siblicide. This suggests that limited parental resources promote the evolution of sibling competition rather than altruistic or cooperative behaviours. In striking contrast, we show here that in 71% of experimental three-chick broods, nestling barn owls, Tyto alba, gave food to their siblings on average twice per night. This behaviour prevailed in the first-born dominant nestlings rather than the last-born subordinate nestlings. It was also more prevalent in individuals displaying a heritable dark phaeomelanin-based coloration, a typical female-specific plumage trait (owls vary from dark reddish to white, females being on average darker reddish than males). Stealing food items from siblings, which occurred in 81% of the nests, was more frequent in light than dark phaeomelanic dominant nestlings. We suggest that food sharing has evolved in the barn owl because parents store prey items in their nest that can be used by the offspring to feed their nestmates to derive indirect (kin selection) or direct benefits (pseudoreciprocity or by-product mutualism). The cost of feeding siblings may be relatively low for dominant individuals while the indirect genetic benefits could be high given that extrapair paternity is infrequent in this species. Thus, in situations in which young animals have access to more food resources than they currently need, they can altruistically share them with their siblings.
Resumo:
The maintenance of phenotypic variation is a central question in evolutionary biology. A commonly suggested mechanism is that of local adaptation, whereby different phenotypes are adapted to alternative environmental conditions. A recent study in the European barn owl (Tyto alba) has shown that natural selection maintains a strong clinal variation in reddish pheomelanin-based coloration. Studies in the region where phenotypic variation in this owl is the highest in Europe have further demonstrated that dark-reddish and pale-reddish owls exploit open and wooded habitats, predate voles and wood mice, and are long-tailed and short-tailed, respectively. However, it remains unclear as to whether these traits evolved as a consequence of allopatric evolution of dark colour in northern Europe and white colour in southern Europe, during which owls could have also evolved different morphologies and foraging behaviour. This scenario implies that covariation between coloration and foraging behaviour could be a specificity of the European continent, which is not found in other worldwide-distributed populations. To investigate this issue we studied a barn owl population in the Middle East. Our results show that, as in Central Europe, dark-reddish female owls breed more often in the open landscape than their pale-reddish female conspecifics, their offspring are fed with more voles than Muridae, and they are longer-winged and longer-tailed. These findings indicate that in the barn owl the association in females between pheomelanin-based coloration and foraging behaviour and morphology is not restricted to the European continent but may well evolve in sympatry in many barn owl populations worldwide.
Resumo:
Spatial variation in the pattern of natural selection can promote local adaptation and genetic differentiation between populations. Because heritable melanin-based ornaments can signal resistance to environmentally mediated elevation in glucocorticoids, to oxidative stress and parasites, populations may vary in the mean degree of melanic coloration if selection on these phenotypic aspects varies geographically. Within a population of Swiss barn owls (Tyto alba), the size of eumelanic spots is positively associated with survival, immunity and resistance to stress, but it is yet unknown whether Tyto species that face stressful environments evolved towards a darker eumelanic plumage. Because selection regimes vary along environmental gradients, we examined whether melanin-based traits vary clinally and are expressed to a larger extent in the tropics where parasites are more abundant than in temperate zones. To this end, we considered 39 barn owl species distributed worldwide. Barn owl species living in the tropics displayed larger eumelanic spots than those found in temperate zones. This was, however, verified in the northern hemisphere only. Parasites being particularly abundant in the tropics, they may promote the evolution of darker eumelanic ornaments.
Resumo:
We report a unique case of two female Barn Owls laying eggs and incubating together in a single nest cup in a communal nest. A trio of two females and one male bred in an abandoned water tower in 2013 in Israel. Both females incubated/brooded together in the communal nest, and all three individuals brought food to the communal family. The two females laid 20 eggs, of which 19 hatched and 16 fledged.
Resumo:
Agro-ecosystems have recently experienced dramatic losses of biodiversity due to more intensive production methods. In order to increase species diversity, agri-environment schemes provide subsidies to farmers who devote a fraction of their land to ecological compensation areas (ECA). Several studies have shown that invertebrate biodiversity is actually higher in ECA than in nearby intensively cultivated farmland. It remains poorly understood, however, to what extent ECA also favour vertebrates, such as small mammals and their predators, which would contribute to restore functioning food chains within revitalized agricultural matrices. We studied small mammal populations among eight habitat types - including wildflower areas, a specific ECA in Switzerland - and habitat selection (radiotracking) by the barn owl Tyto alba, one of their principal predators. Our prediction was that habitats with higher abundances of small mammals would be more visited by foraging Barn owls during the period of chicks' provisioning. Small mammal abundance tended to be higher in wildflower areas than in any other habitat type. Barn owls, however, preferred to forage in cereal fields and grassland. They avoided all types of crops other than cereals, as well as wildflower areas, which suggests that they do not select their hunting habitat primarily with respect to prey density. Instead of prey abundance, prey accessibility may play a more crucial role: wildflower areas have a dense vegetation cover, which may impede access to prey for foraging owls. The exploitation of wildflower areas by the owls might be enhanced by creating open foraging corridors within or around wildflower areas. Wildflower areas managed in that way might contribute to restore functioning food chains within agro-ecosystems.
Resumo:
The white Barn Owl subspecies (Tyto alba alba) is found in southern Europe and the reddish-brown subspecies (T a. guttata) in northern and eastern Europe. In central Europe, the two subspecies interbreed producing a large range of phenotypic variants. Because of the different ratios of the subspecies in different geographic regions, we predict that genetic variation should be greater in Switzerland than in Hungary. We tested this hypothesis by measuring genetic variation with the RAPD method. As predicted, the genetic differentiation within a Swiss population of Barn Owls was significantly greater than the variation within a Hungarian population. This suggests that gene flow is greater in central Europe than at the eastern limit of the Barn Owl distribution in Hungary. In both countries genetic variation was more pronounced in females than in males. As in other birds, this is probably because female Barn Owls are less philopatric than males. The number of migrants between Hungary and Switzerland is ca. 1 individual per generation; if calculated separately for the sexes, then 0.525 for males and ca. I for females (Nm values). The difference in the number of migrants between genders again is likely a consequence of higher male philopatry. The sexual differentiation is greater in the Swiss population than in the Hungarian and the genetic substructuring of the populations of the species is substantial. The reason for the considerable population substructuring could be the nonmigratory behavior and socially monogamous pairing of the species, as well as the geographical barriers (Alps) between the populations examined.
Resumo:
OBJECTIVE:: Lactic acid bacteria (LAB) are used in food industries as probiotic agents. The aim of this study is to assess the potential health effects of airborne exposure to a mix of preblend (LAB and carbohydrate) and milk powder in workers. METHODS:: A medical questionnaire, lung function tests, and immunologic tests were carried out on 50 workers. Occupational exposure to inhalable dust and airborne LAB was measured. RESULTS:: Workers not using respiratory masks reported more symptoms of irritation than workers using protection. Workers from areas with higher levels of airborne LAB reported the most health symptoms and the immune responses of workers to LAB was higher than the immune responses of a control population. CONCLUSIONS:: Measures to reduce exposure to airborne LAB and milk powder in food industries are recommended.
Resumo:
Capsule We present a review of the propensity to eat reptiles in the Barn Owl Tyto alba in Europe. Based on the analysis of 591 published studies reporting 3.07 million prey items identified in pellets, only 2402 reptiles (0.08%) were found. Reptiles were most often captured in southern parts of the European continent and on islands. A large proportion of the 1304 identified reptiles to the species level were nocturnal Gekkonidae (77.1%).
Resumo:
Variation in melanin coloration is widespread and often associated with other phenotypic traits. A recent study showed that darker-reddish pheomelanic Barn Owls (Tyto alba) move longer distances between birth and breeding sites. Because this study considered only individuals recovered within a limited study area, it remains unclear whether the association between melanism and dispersal applies to a larger geographic scale. I analysed an independent dataset of birds ringed in the same study area but recovered dead along roads within and outside this area. As expected, dark pheomelanic owls dispersed further than lighter reddish conspecifics at a larger spatial scale.
Resumo:
Several hypotheses might explain the evolution and maintenance of colour morphs within animal populations. The 'alternative foraging strategy' hypothesis states that alternative colour morphs exploit different ecological niches. This hypothesis predicts that morphs differ in diet, either because foraging success on alternative prey species is morph-dependent or because differently coloured individuals exploit alternative habitats. I examined this prediction in the Barn Owl Tyto alba, a bird that varies in plumage coloration continuously from dark reddish-brown to white. On the European continent, Owls are light-coloured (subspecies T. a. alba) in the south and reddish-brown (T. a. guttata) in the north; in central Europe the two subspecies interbreed, generating many colour variants. If plumage coloration indicates alternative foraging strategies, in sympatry dark- and light-coloured owls should consume prey species that are typical of the diets of T. a. guttata and T. a. alba in allopatry, respectively. In line with this prediction, both in allopatry and in sympatry in Switzerland T. a. guttata fed primarily upon Common Voles Microtus arvalis and T. a. alba upon Wood Mice Apodemus spp. Statistical analyses suggest that morph-dependent diet did not arise from a non-random habitat distribution of owls with respect to plumage coloration. This suggests that foraging success upon alternative prey is morph-dependent.
Resumo:
Melanin-based coloration exists in 2 types: black eumelanism and reddish-brown pheomelanism, which both have a strong heritable component. To test whether these 2 types of melanism are associated with alternative adaptations, we carried out a correlative study over 8 years and an experiment in a Swiss population of barn owls, Tyto alba. This species varies in coloration from reddish-brown to white and from lightly to heavily marked with black spots. Based on the fact that plumage coloration and spottiness are male- and female-specific secondary sexual characters, respectively, we examined whether the probability of breeding is associated with the degree of pheomelanism in males and of eumelanism in females. In males, recruited nestlings were significantly less reddish-brown than their nonrecruited nest mates. In females, individuals displaying larger black spots started to breed at a younger age and had a higher survival, and females with experimentally reduced plumage spottiness bred less often than control females. Therefore, in the barn owl, the degree of male pheomelanism is associated with the probability of being recruited in the local population, whereas the degree of female eumelanism correlates with age at sexual maturity, survival probability, and also the probability of skipping reproduction.