263 resultados para caveat against dealings
Resumo:
Macrophages are essential effector cells of innate immunity that play a pivotal role in the recognition and elimination of invasive microorganisms. Mediators released by activated macrophages orchestrate innate and adaptive immune host responses. The cytokine macrophage migration inhibitory factor (MIF) is an integral mediator of the innate immune system. Monocytes and macrophages constitutively express large amounts of MIF, which is rapidly released after exposure to bacterial toxins and cytokines. MIF exerts potent proinflammatory activities and is an important cytokine of septic shock. Recent investigations of the mechanisms by which MIF regulates innate immune responses to endotoxin and gram-negative bacteria indicate that MIF acts by modulating the expression of Toll-like receptor 4, the signal-transducing molecule of the lipopolysaccharide receptor complex. Given its role in innate immune responses to bacterial infections, MIF is a novel target for therapeutic intervention in patients with septic shock.
Resumo:
A BALB/c cloned T cell line directed against beef apo cytochrome c was shown to exhibit the Lyt-1+2- cell surface phenotype. The fine specificity of antigen recognition exhibited by the T cell clone was assessed by using a variety of peptide preparations obtained from cytochrome c of different sources. The peptide segment recognized by this T cell clone, in conjunction with I-A region gene products, appeared similar to that bound by a monoclonal antibody specific for beef apo cytochrome c derived from the same strain of mice.
Resumo:
To combine the advantage of both the tumor targeting capacity of high affinity monoclonal antibodies (mAbs) and the potent killing properties of cytotoxic T lymphocytes (CTL), we investigated the activity of conjugates made by coupling single Fab' fragments, from mAbs specific for tumor cell surface antigens, to monomeric HLA-A2 complexes containing the immunodominant influenza-matrix peptide 58-66. In solution, the monovalent 95 kDa Fab-HLA-A2/Flu conjugates did not activate influenza-specific CTL. However, when targeted to tumor cells expressing the relevant tumor-associated antigen, the conjugates induced CTL activation and efficient tumor cell lysis, as a result of MHC/peptide surface oligomerization. The highly specific and sensitive in vitro cytotoxicity results presented suggest that injection of Fab-MHC/peptide conjugates could represent a new form of immunotherapy, bridging antibody and T lymphocyte attack on cancer cells.
Resumo:
Plants activate direct and indirect defences in response to insect egg deposition. However, whether eggs can manipulate plant defence is unknown. In Arabidopsis thaliana, oviposition by the butterfly Pieris brassicae triggers cellular and molecular changes that are similar to the changes caused by biotrophic pathogens. In the present study, we found that the plant defence signal salicylic acid (SA) accumulates at the site of oviposition. This is unexpected, as the SA pathway controls defence against fungal and bacterial pathogens and negatively interacts with the jasmonic acid (JA) pathway, which is crucial for the defence against herbivores. Application of P. brassicae or Spodoptera littoralis egg extract onto leaves reduced the induction of insect-responsive genes after challenge with caterpillars, suggesting that egg-derived elicitors suppress plant defence. Consequently, larval growth of the generalist herbivore S. littoralis, but not of the specialist P. brassicae, was significantly higher on plants treated with egg extract than on control plants. In contrast, suppression of gene induction and enhanced S. littoralis performance were not seen in the SA-deficient mutant sid2-1, indicating that it is SA that mediates this phenomenon. These data reveal an intriguing facet of the cross-talk between SA and JA signalling pathways, and suggest that insects have evolved a way to suppress the induction of defence genes by laying eggs that release elicitors. We show here that egg-induced SA accumulation negatively interferes with the JA pathway, and provides an advantage for generalist herbivores.
Resumo:
Fixation enhances cellular morphology and reduces loss of molecules during tissue processing. Antibodies against fixation-resistant epitopes are very useful, because they allow an immunocytochemical detection in tissue of better preserved morphology. However, fixatives can alter antigenicity and adversely affect the result of immunohistochemical procedures. To address this problem, this study examined the feasibility of generating antibodies to a paraformaldehyde-fixed antigen for use in immunohistochemical procedures. The large subunit of neurofilament proteins was selected for this study. Crude neurofilament proteins were isolated and separated by SDS-polyacrylamide gel electrophoresis. The large subunit of neurofilaments (NF-H) was electroeluted from the electrophoresis gel and exposed to paraformaldehyde, and used for immunization of a rabbit. The rabbit antiserum was affinity purified on CNBr-sepharose immobilized neurofilament proteins. On Western blots, the antibody reacted with the NF-H protein in a phosphorylation-dependent manner. In aldehyde-fixed cerebellum, the antibody strongly stained axons. In contrast, in alcohol-fixed cryostat sections the immunocytochemical detection was substantially reduced. The procedure presented in this study, involving a simple pretreatment of the immunogen, allows for the generation of an antibody that may be used in immunohistochemical studies where localization of the immunogen may be reduced or even lost by aldehyde fixation.
Resumo:
BACKGROUND: Hypertension can be controlled adequately with existing drugs such as angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers. Nevertheless, treatment success is often restricted by patients not adhering to treatment. Immunisation against angiotensin II could solve this problem. We investigated the safety and efficacy of CYT006-AngQb-a vaccine based on a virus-like particle-that targets angiotensin II to reduce ambulatory blood pressure. METHODS: In this multicentre, double-blind, randomised, placebo-controlled phase IIa trial, 72 patients with mild-to-moderate hypertension were randomly assigned with a computer-generated randomisation list to receive subcutaneous injections of either 100 mug CYT006-AngQb (n=24), 300 mug CYT006-AngQb (24), or placebo (24), at weeks 0, 4, and 12. 24-h ambulatory blood pressure was measured before treatment and at week 14. The primary outcomes were safety and tolerability. Analyses were done by intention to treat. This study is registered with ClinicalTrials.gov, number NCT00500786. FINDINGS: Two patients in the 100 mug group, three in the 300 mug group, and none in the placebo group discontinued study treatment. All patients were included in safety analyses; efficacy analyses did not include the five dropouts, for whom no data were available at week 14. Five serious adverse events were reported (two in the 100 mug group, two in the 300 mug group, and one in the placebo group); none were deemed to be treatment related. Most side-effects were mild, transient reactions at the injection site. Mild, transient influenza-like symptoms were seen in three patients in the 100 mug group, seven in the 300 mug group, and none in the placebo group. In the 300 mug group, there was a reduction from baseline in mean ambulatory daytime blood pressure at week 14 by -9.0/-4.0 mm Hg compared with placebo (p=0.015 for systolic and 0.064 for diastolic). The 300 mug dose reduced the early morning blood-pressure surge compared with placebo (change at 0800 h -25/-13 mm Hg; p<0.0001 for systolic, p=0.0035 for diastolic). INTERPRETATION: Immunisation with CYT006-AngQb was associated with no serious adverse events; most observed adverse events were consistent with local or systemic responses similar to those seen with other vaccines. The 300 mug dose reduced blood pressure in patients with mild-to-moderate hypertension during the daytime, especially in the early morning. FUNDING: Cytos Biotechnology AG.
Resumo:
Maintaining a regular physical activity practice throughout lifetime is a challenge for most of us. This often means "resisting" against a physical environment and a social organization that promotes physical inactivity and discourage those who, fiercely, walk or try to commute by bike. So there's a little hero behind every doctor that distills the subtle potion of motivational interviewing against sedentary habits. Any hope of change in our living conditions, taking into account our natural need to move, is however not lost. This article illustrates the paths that are traced by collectivities in order that the advices we provide to our patients continue to make sense once the practice door is crossed.
Resumo:
The efficacy of ceftobiprole combined with vancomycin was tested against two vancomycin-intermediate Staphylococcus aureus (VISA) strains, PC3 and Mu50, in rats with experimental endocarditis. Animals with infected aortic vegetations were treated for 3 days with doses simulating the kinetics after intravenous administration in humans of (i) the standard dose of ceftobiprole of 500 mg every 12 h (b.i.d.) (SD-ceftobiprole), (ii) a low dose of ceftobiprole of 250 mg b.i.d. (LD-ceftobiprole), (iii) a very low dose of ceftobiprole of 125 mg b.i.d. (VLD-ceftobiprole), (iv) SD-vancomycin of 1 g b.i.d., or (v) LD- or VLD-ceftobiprole combined with SD-vancomycin. Low dosages of ceftobiprole were purposely used to highlight positive drug interactions. Treatment with SD-ceftobiprole sterilized 12 of 14 (86%) and 10 of 13 (77%) vegetations infected with PC3 and Mu50, respectively (P < 0.001 versus controls). In comparison, LD-ceftobiprole sterilized 10 of 11 (91%) vegetations infected with PC3 (P < 0.01 versus controls) but only 3 of 12 (25%) vegetations infected with Mu50 (P > 0.05 versus controls). VLD-ceftobiprole and SD-vancomycin alone were ineffective against both strains (≤8% sterile vegetations). In contrast, the combination of VLD-ceftobiprole and SD-vancomycin sterilized 7 of 9 (78%) and 6 of 14 (43%) vegetations infected with PC3 and Mu50, respectively, and the combination of LD-ceftobiprole and SD-vancomycin sterilized 5 of 6 (83%) vegetations infected with Mu50 (P < 0.05 versus controls and monotherapy). Thus, ceftobiprole monotherapy simulating standard therapeutic doses was active against VISA experimental endocarditis. Moreover, subtherapeutic LD- and VLD-ceftobiprole synergized with ineffective vancomycin to restore efficacy. Hence, combining ceftobiprole with vancomycin broadens the therapeutic margin of these two compounds against VISA infections.
Resumo:
Arenaviruses are a large and diverse family of viruses that merit significant attention as causative agents of severe hemorrhagic fevers in humans. Lassa virus (LASV) in Africa and the South American hemorrhagic fever viruses Junin (JUNV), Machupo (MACV), and Guanarito (GTOV) have emerged as important human pathogens and represent serious public health problems in their respective endemic areas. A hallmark of fatal arenaviruses hemorrhagic fevers is a marked immunosuppression of the infected patients. Antigen presenting cells (APCs) such as macrophages and in particular dendritic cells (DCs) are early and preferred targets of arenaviruses infection. Instead of being recognized and presented as foreign antigens by DCs, arenaviruses subvert the normal mechanisms of pathogen recognition, invade DCs and establish a productive infection. Viral replication perturbs the DCs' ability to present antigens and to activate T and B cells, contributing to the marked virus-induced immunosuppression observed in fatal disease. Considering their crucial role in the development of an anti-viral immune response, the mechanisms by which arenaviruses, and in particular LASV, invade DCs are of particular interest. The C-type lectin DC-specific Intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) was recently identified as a potential entry receptor for LASV. The first project of my thesis focused therefore on the investigation of the role of DC-SIGN in LASV entry into primary human DCs. My data revealed that DC-SIGN serves as an attachment factor for LASV on human DCs and can facilitate capture of free virus and subsequent cell entry. However, in contrast to other emerging viruses, of the phlebovirus family, I found that DC-SIGN does likely not function as an authentic entry receptor for LASV. Moreover, I was able to show that LASV enters DCs via an unusually slow pathway that depends on actin, but is independent of clathrin and dynamin. Considering the lack of effective treatments and the limited public health infrastructure in endemic regions, the development of protective vaccines against arenaviruses is an urgent need. To address this issue, the second project of my thesis aimed at the development of a novel recombinant arenavirus vaccine based on a nanoparticle (NPs) platform and its evaluation in a small animal model. During the first phase of the project I designed, produced, and characterized suitable vaccine antigens. In the second phase of the project, I generated antigen-conjugated NPs, developed vaccine formulations, and tested the NPs for their ability to elicit anti-viral T cell responses as well as anti-viral antibodies. I demonstrated that the NPs platform is able to activate both cellular and humoral branches of the adaptive anti-viral immunity, providing proof-of-principle. In sum, my first project will allow, in a long term perspective, a better understanding of the viral pathogenesis and contribute to the development of novel antiviral strategies. The second project will expectidly offer a new treatment option against arenaviruses.
Smad3 deficiency in mice protects against insulin resistance and obesity induced by a high-fat diet.
Resumo:
OBJECTIVE-Obesity and associated pathologies are major global health problems. Transforming growth factor-beta/Smad3 signaling has been implicated in various metabolic processes, including adipogenesis, insulin expression, and pancreatic beta-cell function. However, the systemic effects of Smad3 deficiency on adiposity and insulin resistance in vivo remain elusive. This study investigated the effects of Smad3 deficiency on whole-body glucose and lipid homeostasis and its contribution to the development of obesity and type 2 diabetes.RESEARCH DESIGN AND METHODS-We compared various metabolic profiles of Smad3-knockout and wild-type mice. We also determined the mechanism by which Smad3 deficiency affects the expression of genes involved in adipogenesis and metabolism. Mice were then challenged with a high-fat diet to study the impact of Smad3 deficiency on the development of obesity and insulin resistance.RESULTS-Smad3-knockout mice exhibited diminished adiposity with improved glucose tolerance and insulin sensitivity. Chromatin immunoprecipitation assay revealed that Smad3 deficiency increased CCAAT/enhancer-binding protein beta-C/EBP homologous protein 10 interaction and exerted a differential regulation on proliferator-activated receptor beta/delta and proliferator-activated receptor gamma expression in adipocytes. Focused gene expression profiling revealed an altered expression of genes involved in adipogenesis, lipid accumulation, and fatty acid beta-oxidation, indicative of altered adipose physiology. Despite reduced physical activity with no modification in food intake, these mutant mice were resistant to obesity and insulin resistance induced by a high-fat diet.CONCLUSIONS-Smad3 is a multifaceted regulator in adipose physiology and the pathogenesis of obesity and type 2 diabetes, suggesting that Smad3 may be a potential target for the treatment of obesity and its associated disorders.
Resumo:
Y-688 is a new fluoroquinolone with increased activity against ciprofloxacin-resistant staphylococci. The MICs of Y-688 and other quinolones were determined for 58 isolates of ciprofloxacin-resistant and methicillin-resistant Staphylococcus aureus (MRSA). The MICs at which 50% and 90% of bacteria were inhibited were >/=128 and >/=128 mg/liter, respectively, for ciprofloxacin, 16 and 32 mg/liter, respectively, for sparfloxacin, and 0.25 and 1 mg/liter, respectively, for Y-688. This new quinolone was further tested in rats with experimental endocarditis due to either of two isolates of ciprofloxacin-resistant MRSA (namely, P8/128 and CR1). Infected animals were treated for 3 days with ciprofloxacin, vancomycin, or Y-688. Antibiotics were administered through a computerized pump to simulate human-like pharmacokinetics in the serum of rats. The anticipated peak and trough levels of Y-688 were 4 and 1 mg/liter at 0.5 and 12 h, respectively. Treatment with ciprofloxacin was ineffective. Vancomycin significantly decreased vegetation bacterial counts for both organisms (P less, similar 0.05). In contrast, Y-688 only marginally decreased vegetation bacterial counts (P greater, similar 0.05). Moreover, several vegetation that failed Y-688 treatment grew staphylococci for which the MICs of the test antibiotic were increased two to eight times. Y-688 also selected for resistance in vitro, and isolates for which the MICs were increased eight times emerged at a frequency of ca. 10(-8). Thus, in spite of its low MIC for ciprofloxacin-resistant MRSA, Y-688 failed in vivo and its use carried the risk of resistance selection. The fact that ciprofloxacin-resistant staphylococci became rapidly resistant to this potent new drug suggests that the treatment of ciprofloxacin-resistant MRSA with new quinolones might be more problematic than expected.
Resumo:
Background: In order to improve the immunogenicity of currently available non-replicating pox virus HIV vaccine vectors, NYVAC was genetically modified through re-insertion of two host range genes (K1L and C7L), resulting in restored replicative capacity in human cells. Methods: In the present study these vectors, expressing either a combination of the HIV-1 clade C antigens Env, Gag, Pol, Nef, or a combination of Gal, Pol, Nef were evaluated for safety and immunogenicity in rhesus macaques, which were immunized at weeks 0, 4 and 12 either by scarification (conventional poxvirus route of immunization), intradermal or by intramuscular injection (route used in previous vaccine studies). Results: Replication competent NYVAC-C-KC vectors induced higher HIV-specific responses, as measured by IFN-g ELISpot assay, than the replication defective NYVAC-C vectors. Application through scarification only required one immunization to induce maximum HIV-specific immune responses. This method simultaneously induced relatively lower anti-vector responses. In contrast, two to three immunizations were required when the NYVAC-C-KC vectors were given by intradermal or intramuscular injection and this method tended to generate slightly lower responses. Responses were predominantly directed against Env in the animals that received NYVAC-C-KC vectors expressing HIV-1 Env, Gag, Pol, Nef, while Gag responses were dominant in the NYVAC-C-KC HIV-1 Gag, Pol, Nef immunized animals. Conclusion: The current study demonstrates that NYVAC replication competent vectors were well tolerated and showed increased immunogenicity as compared to replication defective vectors. Further studies are needed to evaluate the most efficient route of immunization and to explore the use of these replication competent NYVAC vectors in prime/boost combination with gp120 proteinbased vaccine candidates. This study was performed within the Poxvirus T-cell Vaccine Discovery Consortium (PTVDC) which is part of the CAVD program.
Resumo:
Tumor vaccines may induce activation and expansion of specific CD8 T cells which can subsequently destroy tumor cells in cancer patients. This phenomenon can be observed in approximately 5-20% of vaccinated melanoma patients. We searched for factors associated with T cell responsiveness to peptide vaccines. Peptide antigen-specific T cells were quantified and characterized ex vivo before and after vaccination. T cell responses occurred primarily in patients with T cells that were already pre-activated before vaccination. Thus, peptide vaccines can efficiently boost CD8 T cells that are pre-activated by endogenous tumor antigen. Our results identify a new state of T cell responsiveness and help to explain and predict tumor vaccine efficacy.