62 resultados para carboxyfluorescein diacetate succinimidyl ester


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have examined the effects of two agents depleting the intracellular pool of glutathione (GSH) on macrophage activation induced by IFN-gamma + LPS, as measured by nitrite production and leishmanicidal activity. Diethylmaleate (DEM), which depletes intracellular GSH by conjugation via a reaction catalyzed by the GSH-S-transferase, strongly inhibited nitrite secretion and leishmanicidal activity when added before or at the time of addition of IFN-gamma + LPS; this inhibition was progressively lost when addition of DEM was delayed up to 10 hr. A close correlation was observed between levels of intracellular soluble GSH during activation and nitrite secretion. Inhibition was partially reversed by the addition of glutathione ethyl ester (GSH-Et). Buthionine sulfoximine (BSO), a specific inhibitor of gamma-glutamylcysteine synthetase, also inhibited macrophage activation, although to a lesser extent than DEM despite a more pronounced soluble GSH depletion. This inhibition was completely reversed by the addition of GSH-Et. DEM and BSO did not alter cell viability or PMA-triggered O2- production by activated macrophages, suggesting that the inhibitory effects observed on nitrite secretion and leishmanicidal activity were not related to a general impairment of macrophage function. DEM and BSO treatment reduced iNOS specific activity and iNOS protein in cytosolic extracts. DEM also decreased iNOS mRNA expression while BSO had no effect. Although commonly used as a GSH-depleting agent, DEM may have additional effects because it can also act as a sulhydryl reagent; BSO, on the other hand, which depletes GSH by enzymatic inhibition, has no effect on protein-bound GSH. Our results suggest that both soluble and protein-bound GSH may be important for the induction of NO synthase in IFN-gamma + LPS-activated macrophages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic administration of recombinant human erythropoietin (rHuEPO) can generate serious cardiovascular side effects such as arterial hypertension (HTA) in clinical and sport fields. It is hypothesized that nitric oxide (NO) can protect from noxious cardiovascular effects induced by chronic administration of rHuEPO. On this base, we studied the cardiovascular effects of chronic administration of rHuEPO in exercise-trained rats treated with an inhibitor of NO synthesis (L-NAME). Rats were treated or not with rHuEPO and/or L-NAME during 6 weeks. During the same period, rats were subjected to treadmill exercise. The blood pressure was measured weekly. Endothelial function of isolated aorta and small mesenteric arteries were studied and the morphology of the latter was investigated. L-NAME induced hypertension (197 ± 6 mmHg, at the end of the protocol). Exercise prevented the rise in blood pressure induced by L-NAME (170 ± 5 mmHg). However, exercise-trained rats treated with both rHuEPO and L-NAME developed severe hypertension (228 ± 9 mmHg). Furthermore, in these exercise-trained rats treated with rHuEPO/L-NAME, the acetylcholine-induced relaxation was markedly impaired in isolated aorta (60% of maximal relaxation) and small mesenteric arteries (53%). L-NAME hypertension induced an internal remodeling of small mesenteric arteries that was not modified by exercise, rHuEPO or both. Vascular ET-1 production was not increased in rHuEPO/L-NAME/training hypertensive rats. Furthermore, we observed that rHuEPO/L-NAME/training hypertensive rats died during the exercise or the recovery period (mortality 51%). Our findings suggest that the use of rHuEPO in sport, in order to improve physical performance, represents a high and fatal risk factor, especially with pre-existing cardiovascular risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serum-free aggregating cell cultures of fetal rat telencephalon treated with the potent tumor promoter phorbol 12-myristate 13-acetate (PMA) showed a marked, rapid, and sustained increase in the activity of the astrocyte-specific enzyme glutamine synthetase (GS). This effect was accompanied by a small increase in RNA synthesis and a progressive reduction in DNA synthesis. Only mitotically active cultures were responsive to PMA treatments. Since in aggregate cultures astrocytes are the preponderant cell type, both in number and mitotic activity, it can be concluded that PMA induces and/or enhances the terminal differentiation of astrocytes. The developmental expression of GS was also greatly stimulated by mezerein, a potent nonphorbol tumor promoter, but not by 4 alpha-phorbol 12,13-didecanoate, a nonpromoting phorbol ester. Since both tumor promoters, PMA and mezerein, are potent and specific activators of C-kinase, it is suggested that C-kinase plays a regulatory role in the growth and differentiation of normal astrocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whereas previous studies have shown that opening of the mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channel protects the adult heart against ischemia-reperfusion injury, it remains to be established whether this mechanism also operates in the developing heart. Isolated spontaneously beating hearts from 4-day-old chick embryos were subjected to 30 min of anoxia followed by 60 min of reoxygenation. The chrono-, dromo-, and inotropic disturbances, as well as alterations of the electromechanical delay (EMD), reflecting excitation-contraction (E-C) coupling, were investigated. Production of reactive oxygen species (ROS) in the ventricle was determined using the intracellular fluorescent probe 2',7'-dichlorofluorescin (DCFH). Effects of the specific mitoK(ATP) channel opener diazoxide (Diazo, 50 microM) or the blocker 5-hydroxydecanoate (5-HD, 500 microM), the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 50 microM), the antioxidant N-(2-mercaptopropionyl)glycine (MPG, 1 mM), and the PKC inhibitor chelerythrine (Chel, 5 microM) on oxidative stress and postanoxic functional recovery were determined. Under normoxia, the baseline parameters were not altered by any of these pharmacological agents, alone or in combination. During the first 20 min of postanoxic reoxygenation, Diazo doubled the peak of ROS production and, interestingly, accelerated recovery of ventricular EMD and the PR interval. Diazo-induced ROS production was suppressed by 5-HD, MPG, or L-NAME, but not by Chel. Protection of ventricular EMD by Diazo was abolished by 5-HD, MPG, L-NAME, or Chel, whereas protection of the PR interval was abolished by L-NAME exclusively. Thus pharmacological opening of the mitoK(ATP) channel selectively improves postanoxic recovery of cell-to-cell communication and ventricular E-C coupling. Although the NO-, ROS-, and PKC-dependent pathways also seem to be involved in this cardioprotection, their interrelation in the developing heart can differ markedly from that in the adult myocardium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We used a hemolytic plaque assay for insulin to determine whether the same pancreatic B cells respond to D-glucose, 2-amino-bicyclo[2,2,1]heptane-2-carboxylic acid (BCH) and the association of this nonmetabolized analogue of L-leucine with either the monomethyl ester of succinic acid (SME) or the dimethyl ester of L-glutamic acid (GME). During a 30-min incubation in the absence of D-glucose, BCH alone (5 mM) had no effect on insulin release. In contrast, the combination of BCH with either SME (10 mM) or GME (3 mM) stimulated insulin release to the same extent observed in the sole presence of 16.7 mM D-glucose. The effects of BCH plus SME and BCH plus GME on both percentage of secreting B cells and total insulin output were little affected in the presence of D-glucose concentrations ranging from 0 to 16.7 mM. Varying the concentration of SME from 2 to 10 mM also did not influence these effects. In other experiments, the very same B cells were first exposed 45 min to 16.7 mM D-glucose, then incubated 45 min in the presence of only BCH and SME. Under these conditions, most (80.3 +/- 2.5%) of the cells contributing to insulin release did so during both incubation periods. Furthermore, virtually all cells responding to BCH and SME during the second incubation corresponded to cells also responsive to D-glucose during the first incubation. Similar observations were made when the sequence of the two incubations was reversed.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The plasticity of mature oligodendrocytes was studied in aggregating brain cell cultures at the period of maximal expression of myelin marker proteins. The protein kinase C (PKC)-activating tumor promoters mezerein and phorbol 12-myristate 13-acetate (PMA), but not the inactive phorbol ester analog 4alpha-PMA, caused a pronounced decrease of myelin basic protein (MBP) content and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) activity. In contrast, myelin/oligodendrocyte protein (MOG) content was affected relatively little. Northern blot analyses showed a rapid reduction of MBP and PLP gene expression induced by mezerein, and both morphological and biochemical findings indicate a drastic loss of compact myelin. During the acute phase of demyelination, only a relatively small increase in cell death was perceptible by in situ end labeling and in situ nick translation. Basic fibroblast growth factor (bFGF) also reduced the levels of the oligodendroglial differentiation markers and enhanced the demyelinating effects of the tumor promoters. The present results suggest that PKC activation resulted in severe demyelination and partial loss of the oligodendrocyte-differentiated phenotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metabolic problems lead to numerous failures during clinical trials, and much effort is now devoted to developing in silico models predicting metabolic stability and metabolites. Such models are well known for cytochromes P450 and some transferases, whereas less has been done to predict the activity of human hydrolases. The present study was undertaken to develop a computational approach able to predict the hydrolysis of novel esters by human carboxylesterase hCES2. The study involved first a homology modeling of the hCES2 protein based on the model of hCES1 since the two proteins share a high degree of homology (congruent with 73%). A set of 40 known substrates of hCES2 was taken from the literature; the ligands were docked in both their neutral and ionized forms using GriDock, a parallel tool based on the AutoDock4.0 engine which can perform efficient and easy virtual screening analyses of large molecular databases exploiting multi-core architectures. Useful statistical models (e.g., r (2) = 0.91 for substrates in their unprotonated state) were calculated by correlating experimental pK(m) values with distance between the carbon atom of the substrate's ester group and the hydroxy function of Ser228. Additional parameters in the equations accounted for hydrophobic and electrostatic interactions between substrates and contributing residues. The negatively charged residues in the hCES2 cavity explained the preference of the enzyme for neutral substrates and, more generally, suggested that ligands which interact too strongly by ionic bonds (e.g., ACE inhibitors) cannot be good CES2 substrates because they are trapped in the cavity in unproductive modes and behave as inhibitors. The effects of protonation on substrate recognition and the contrasting behavior of substrates and products were finally investigated by MD simulations of some CES2 complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of the present study was to examine the viscoelastic properties of the carotid artery in genetically identical rats exposed to similar levels of blood pressure sustained by different mechanisms. Eight-week old male Wistar rats were examined 2 weeks after renal artery clipping (two-kidney, one clip [2K1C] Goldblatt rats, n = 53) or sham operation (n = 49). One half of the 2K1C and sham rats received the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 1.48 mmol/L) in their drinking water for 2 weeks after the surgical procedure. Mean blood pressure increased significantly in the 2K1C-water (182 mm Hg), 2K1C-L-NAME (197 mm Hg), and sham-L-NAME (170 mm Hg) rats compared with the sham-water rats (127 mm Hg). Plasma renin activity was not altered by L-NAME but significantly enhanced after renal artery clipping. A significant and similar increase in the cross-sectional area of the carotid artery was observed in L-NAME and vehicle-treated 2K1C rats. L-NAME per se did not modify cross-sectional area in the sham rats. There was a significant upward shift of the distensibility-pressure curve in the L-NAME- and vehicle-treated 2K1C rats compared with the sham-L-NAME rats. L-NAME treatment did not alter the distensibility-pressure curve in the 2K1C rats. These results demonstrate that the mechanisms responsible for artery wall hypertrophy in renovascular hypertension are accompanied by an increase in arterial distensibility that is not dependent on the synthesis of nitric oxide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The function of interleukin-3 (or multi-CSF) in the hemopoietic system has been studied in great detail. Although its growth promoting activity on brain microglial cells has been confirmed both in vitro and in vivo, its presence in the brain and even in cultured brain cells has repeatedly been questioned. We have shown recently that isolated rat microglia express mRNA(IL-3) and synthesize IL-3 polypeptide. It is shown here by use of the PCR method, that mRNA(IL-3) is found also in C6 glioblastoma, in rat aggregate cultures, and in newborn and adult rat brain. Quantitation of amplified cDNA(IL-3) was achieved by non-competitive RT-PCR using an elongated internal standard. IL-3 messenger RNA was almost undetectable in vivo and low in (serum-free) aggregate cultures. In isolated microglia, mRNA(IL-3) was increased upon treatment with LPS, PHA, with the cytokines IL-1 or TNF-alpha, with retinoic acid, dbcAMP or the phorbol ester TPA. Effects of LPS were inhibited by dexamethasone, while the glucocorticoid by itself had no effect on basal IL-3 expression. LPS increased mRNA(IL-3) in a concentration-dependent manner beginning with 10 pg/ml and reaching plateau levels at 10 ng/ml. LPS also increased mRNAs of TNF-alpha and TNF-beta. TNF-alpha mRNA was already detectable in untreated microglia and LPS-increased levels were sustained for a few days. In contrast, TNF-beta mRNA was observed only between 4 and 16 h of LPS incubation. It was absent in LPS-free microglia, and after 24 h of LPS-treatment or later.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective This paper reviews the development and clinical validation of photodynamic diagnosis (PDD) of bladder cancer. Methods The authors reviewed the literature on the development of PDD, in particular the evidence for the clinical efficacy of hexaminolevulinate PDD in the diagnosis of bladder cancer. Results After initial work on ultraviolet cystoscopy following oral tetracycline, the focus of PDD research shifted to the use of synthetic porphyrins. First, the prodrug delta-aminolevulinic acid (ALA) was shown to cause a transient but significant accumulation of protoporphyrin IX (PpIX) in malignant or premalignant bladder tissue. Excitation by blue light leads to PpIX fluorescence (red), which distinguishes tumour from normal tissue (blue). Hexaminolevulinate (HAL, Hexvix), an ester of ALA, was then developed and has greater bioavailability and stability than the parent compound. It has been approved for clinical use in the diagnosis of bladder cancer. Clinical studies have shown that HAL PDD detects tumours, including carcinoma in situ (CIS), that are missed by conventional white-light cystoscopy. Conclusions HAL PDD is a valuable aid to the detection of bladder tumours, including CIS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oseltamivir is the ester-type prodrug of the neuraminidase inhibitor oseltamivir carboxylate. It has been shown to be an effective treatment for both seasonal influenza and the recent pandemic 2009 A/H1N1 influenza, reducing both the duration and severity of the illness. It is also effective when used preventively. This review aims to describe the current knowledge of the pharmacokinetic and pharmacodynamic characteristics of this agent, and to address the issue of possible therapeutic drug monitoring. According to the currently available literature, the pharmacokinetics of oseltamivir carboxylate after oral administration of oseltamivir are characterized by mean ± SD bioavailability of 79 ± 12%, apparent clearance of 25.3 ± 7.0 L/h, an elimination half-life of 7.4 ± 2.5 hours and an apparent terminal volume of distribution of 267 ± 122 L. A maximum plasma concentration of 342 ± 83 μg/L, a time to reach the maximum plasma concentration of 4.2 ± 1.1 hours, a trough plasma concentration of 168 ± 32 μg/L and an area under the plasma concentration-time curve from 0 to 24 hours of 6110 ± 1330 μg · h/L for a 75 mg twice-daily regimen were derived from literature data. The apparent clearance is highly correlated with renal function, hence the dosage needs to be adjusted in proportion to the glomerular filtration rate. Interpatient variability is moderate (28% in apparent clearance and 46% in the apparent central volume of distribution); there is no indication of significant erratic or limited absorption in given patient subgroups. The in vitro pharmacodynamics of oseltamivir carboxylate reveal wide variation in the concentration producing 50% inhibition of influenza A and B strains (range 0.17-44 μg/L). A formal correlation between systemic exposure to oseltamivir carboxylate and clinical antiviral activity or tolerance in influenza patients has not yet been demonstrated; thus no formal therapeutic or toxic range can be proposed. The pharmacokinetic parameters of oseltamivir carboxylate after oseltamivir administration (bioavailability, apparent clearance and the volume of distribution) are fairly predictable in healthy subjects, with little interpatient variability outside the effect of renal function in all patients and bodyweight in children. Thus oseltamivir carboxylate exposure can probably be controlled with sufficient accuracy by thorough dosage adjustment according to patient characteristics. However, there is a lack of clinical study data on naturally infected patients. In addition, the therapeutic margin of oseltamivir carboxylate is poorly defined. The usefulness of systematic therapeutic drug monitoring in patients therefore appears to be questionable; however, studies are still needed to extend the knowledge to particular subgroups of patients or dosage regimens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of endocrine disruption emerged over a decade ago with the observation that several natural or industrial compounds can interfere with estrogen and androgen signaling, and thereby affect both male and female reproductive functions. Since then, many endocrine-disrupting chemicals (EDCs) have been identified and the concept has been broadened to receptors regulating other aspects of endocrine pathways. In that context, interference of EDCs with receptors regulating metabolism has been proposed as a factor that could contribute to metabolic diseases such as obesity and diabetes. We review recent studies showing that several pollutants, including phthalates and organotins, interfere with PPAR (peroxisome proliferator-activated receptors) nuclear receptors and may thereby affect metabolic homeostasis. Particular emphasis is given on the mechanisms of action of these compounds. However, unlike what has been suspected, we provide evidence from mouse models suggesting that in utero exposure to the phthalate ester di-ethyl-hexyl-phthalate most likely does not predispose to obesity. Collectively, these studies define a subclass of EDCs that perturb metabolic signaling and that we propose to define as metabolic disruptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) stimulates glucose-induced insulin secretion by binding to a specific G protein-coupled receptor linked to activation of the adenylyl cyclase pathway. Here, using insulinoma cell lines, we studied homologous and heterologous desensitization of GLP-1-induced cAMP production. Preexposure of the cells to GLP-1 induced a decrease in GLP-1-mediated cAMP production, as assessed by a 3- to 5-fold rightward shift of the dose-response curve and an approximately 20 percent decrease in the maximal production of cAMP. Activation of protein kinase C by the phorbol ester phorbol 12-myristate 13-acetate (PMA) also induced desensitization of the GLP-1-mediated response, leading to a 6- to 9-fold shift in the EC50 and a 30% decrease in the maximal production of cAMP. Both forms of desensitization were additive, and the protein kinase C inhibitor RO-318220 inhibited PMA-induced desensitization, but not agonist-induced desensitization. GLP-1- and PMA-dependent desensitization correlated with receptor phosphorylation, and the levels of phosphorylation induced by the two agents were additive. Furthermore, PMA-induced, but not GLP-1-induced, phosphorylation was totally inhibited by RO-318220. Internalization of the GLP-1 receptor did not participate in the desensitization induced by PMA, as a mutant GLP-1 receptor lacking the last 20 amino acids of the cytoplasmic tail was found to be totally resistant to the internalization process, but was still desensitized after PMA preexposure. PMA and GLP-1 were not able to induce the phosphorylation of a receptor deletion mutant lacking the last 33 amino acids of the cytoplasmic tail, indicating that the phosphorylation sites were located within the deleted region. The cAMP production mediated by this deletion mutant was not desensitized by PMA and was only poorly desensitized by GLP-1. Together, our results indicate that the production of cAMP and, hence, the stimulation of insulin secretion induced by GLP-1 can be negatively modulated by homologous and heterologous desensitization, mechanisms that involve receptor phosphorylation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cytochemical marker such as alpha-naphthyl acetate esterase (ANAE) has been found useful for the morphological identification of the subset of T lymphocytes having receptors for Fcμ (TM cells). ANAE reaction on TM cells gives a typical pattern of one to four positive spots, whereas this pattern is not found on T cells with receptors for Fcγ (TG cells). ANAE is abundant in monocytes but not detectable in granulocytes. Herein another type of esterase activity, naphthol-AS-D chloroacetate esterase (NCAE), is described; it is known to be abundant in granulocytes and was found to give a specific pattern of reactivity with the subpopulation of large granular lymphocytes (LGL). This pattern of fine granular staining was observed not only on LGL present in the TG cell subpopulation but also in LGL present in the non-T, non-B cells. Fractions of peripheral blood mononuclear cells which were ènriched up to 80% in LGL by Percoll discontinuous density gradient gave a similar percentage of specific NCAE pattern. In addition, among the different fractions from Percoll gradient, there was a good correlation (r = 0.94) between the number of NCAE-positive cells and the natural killer activity against the natural killer susceptible K562 target cells. It will be important to determine whether or not this enzymatic activity plays a role in the cytotoxic activities of LGL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Human immunodeficiency virus (HIV) takes advantage of multiple host proteins to support its own replication. The gene ZNRD1 (zinc ribbon domain-containing 1) has been identified as encoding a potential host factor that influenced disease progression in HIV-positive individuals in a genomewide association study and also significantly affected HIV replication in a large-scale in vitro short interfering RNA (siRNA) screen. Genes and polymorphisms identified by large-scale analysis need to be followed up by means of functional assays and resequencing efforts to more precisely map causal genes. METHODS: Genotyping and ZNRD1 gene resequencing for 208 HIV-positive subjects (119 who experienced long-term nonprogression [LTNP] and 89 who experienced normal disease progression) was done by either TaqMan genotyping assays or direct sequencing. Genetic association analysis was performed with the SNPassoc package and Haploview software. siRNA and short hairpin RNA (shRNA) specifically targeting ZNRD1 were used to transiently or stably down-regulate ZNRD1 expression in both lymphoid and nonlymphoid cells. Cells were infected with X4 and R5 HIV strains, and efficiency of infection was assessed by reporter gene assay or p24 assay. RESULTS: Genetic association analysis found a strong statistically significant correlation with the LTNP phenotype (single-nucleotide polymorphism rs1048412; [Formula: see text]), independently of HLA-A10 influence. siRNA-based functional analysis showed that ZNRD1 down-regulation by siRNA or shRNA impaired HIV-1 replication at the transcription level in both lymphoid and nonlymphoid cells. CONCLUSION: Genetic association analysis unequivocally identified ZNRD1 as an independent marker of LTNP to AIDS. Moreover, in vitro experiments pointed to viral transcription as the inhibited step. Thus, our data strongly suggest that ZNRD1 is a host cellular factor that influences HIV-1 replication and disease progression in HIV-positive individuals.