294 resultados para beneficial microbe
Resumo:
Some root-associated pseudomonads sustain plant growth by suppressing root diseases caused by pathogenic fungi. We investigated to which extent select cereal cultivars influence expression of relevant biocontrol traits (i.e., root colonization efficacy and antifungal activity) in Pseudomonas fluorescens CHA0. In this representative plant-beneficial bacterium, the antifungal metabolites 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin (PRN), pyoluteorin (PLT), and hydrogen cyanide (HCN) are required for biocontrol. To monitor host plant effects on the expression of biosynthetic genes for these compounds on roots, we developed fluorescent dual-color reporters suited for flow cytometric analysis using fluorescence-activated cell sorting (FACS). In the dual-label strains, the constitutively expressed red fluorescent protein mCherry served as a cell tag and marker for root colonization, whereas reporter fusions based on the green fluorescent protein allowed simultaneous recording of antifungal gene expression within the same cell. FACS analysis revealed that expression of DAPG and PRN biosynthetic genes was promoted in a cereal rhizosphere, whereas expression of PLT and HCN biosynthetic genes was markedly less sustained. When analyzing the response of the bacterial reporters on roots of a selection of wheat, spelt, and triticale cultivars, we were able to detect subtle species- and cultivar-dependent differences in colonization and DAPG and HCN gene expression levels. The expression of these biocontrol traits was particularly favored on roots of one spelt cultivar, suggesting that a careful choice of pseudomonad-cereal combinations might be beneficial to biocontrol. Our approach may be useful for selective single-cell level analysis of plant effects in other bacteria-root interactions.
Resumo:
Extinction, recolonization, and local adaptation are common in natural spatially structured populations. Understanding their effect upon genetic variation is important for systems such as genetically modified organism management or avoidance of drug resistance. Theoretical studies on the effect of extinction and recolonization upon genetic variance started appearing in the 1970s, but the role of local adaptation still has no good theoretical basis. Here we develop a model of a haploid species in a metapopulation in which a locally adapted beneficial allele is introduced. We study the effect of different spatial patterns of local adaptation, and different metapopulation dynamics, upon the fixation probability of the beneficial allele. Controlling for the average selection pressure, we find that a small area of positive selection can significantly increase the global probability of fixation. However, local adaptation becomes less important as extinction rate increases. Deme extinction and recolonization have a spatial smoothing effect that effectively reduces spatial variation in fitness.
Resumo:
The application of plant-beneficial pseudomonads provides a promising alternative to chemical pest management in agriculture. The fact that Pseudomonas fluorescens CHA0 and Pf-5, both well-known biocontrol agents of fungal root diseases, exhibit also potent insecticidal activity is of particular interest, as these plant-beneficial bacteria naturally colonize the rhizosphere of important crop plants. Insecticidal activity in these strains depends on a novel locus encoding the production of a protein toxin termed Fit (for P. fluorescens insecticidal toxin). To gain a better understanding of the ecological relevance of the Pseudomonas anti-insect activity, we have begun to investigate the occurrence and molecular diversity of the Fit toxin genes among root-associated pseudomonads. To this end, we have screened a large world-wide collection of fluorescent Pseudomonas sp. isolated from the roots of different plant species using molecular fingerprinting techniques. The strains are already well characterized for exoproduct patterns and disease-suppressive ability and are currently being tested for insecticidal activity in a greater wax moth larvae assay system.
Resumo:
Multitrophic interactions mediate the ability of fungal pathogens to cause plant disease and the ability of bacterial antagonists to suppress disease. Antibiotic production by antagonists, which contributes to disease suppression, is known to be modulated by abiotic and host plant environmental conditions. Here, we demonstrate that a pathogen metabolite functions as a negative signal for bacterial antibiotic biosynthesis, which can determine the relative importance of biological control mechanisms available to antagonists and which may also influence fungus-bacterium ecological interactions. We found that production of the polyketide antibiotic 2,4-diacetylphloroglucinol (DAPG) was the primary biocontrol mechanism of Pseudomonas fluorescens strain Q2-87 against Fusarium oxysporum f. sp. radicis-lycopersici on the tomato as determined with mutational analysis. In contrast, DAPG was not important for the less-disease-suppressive strain CHA0. This was explained by differential sensitivity of the bacteria to fusaric acid, a pathogen phyto- and mycotoxin that specifically blocked DAPG biosynthesis in strain CHA0 but not in strain Q2-87. In CHA0, hydrogen cyanide, a biocide not repressed by fusaric acid, played a more important role in disease suppression.
Resumo:
BACKGROUND: There is promising but conflicting evidence to recommend the addition of probiotics to foods for prevention and treatment of allergy. Based on previous studies with fermented milk containing Lactobacillus paracasei NCC2461, we aimed to compare the effect of a powder form of the latter probiotic with the effect of a blend of Lactobacillus acidophilus ATCC SD5221 and Bifidobacterium lactis ATCC SD5219 in patients with allergic rhinitis. METHODS: A double-blind, randomized, cross-over study, involving 31 adults with allergic rhinitis to grass pollen, was performed outside the grass pollen season (registration number: NCT01233154). Subjects received each product for 4-weeks in two phases separated by a wash-out period of 6 to 8 weeks. A nasal provocation test was performed before and after each 4-week product intake period, and outcome parameters (objective and subjective clinical symptoms; immune parameters) were measured during and/or 24 hours after the test. RESULTS: Out of the 31 subject enrolled, 28 completed the study. While no effect was observed on nasal congestion (primary outcome), treatment with NCC2461 significantly decreased nasal pruritus (determined by VAS), and leukocytes in nasal fluid samples, enhanced IL-5, IL-13 and IL-10 production by peripheral blood mononuclear cells in an allergen specific manner and tended to decrease IL-5 secretion in nasal fluid, in contrast to treatment with the blend of L. acidophilus and B. lactis. CONCLUSIONS: Despite short-term consumption, NCC2461 was able to reduce subjective nasal pruritus while not affecting nasal congestion in adults suffering from grass pollen allergic rhinitis. The associated decrease in nasal fluid leukocytes and IL-5 secretion, and the enhanced IL-10 secretion in an allergen specific manner may partly explain the decrease in nasal pruritus. However, somewhat unexpected systemic immune changes were also noted. These data support the study of NCC2461 consumption in a seasonal clinical trial to further demonstrate its potentially beneficial effect.
Resumo:
STUDY OBJECTIVE: Acute pain is the most frequent complaint in emergency department (ED) admissions, but its management is often neglected, placing patients at risk of oligoanalgesia. We evaluate the effect of the implementation of guidelines for pain management in ED patients with pain at admission or anytime during their stay in our ED. METHODS: This prospective pre-post intervention cohort study included data collection both before and after guideline implementation. Consecutive adult patients admitted with acute pain from any cause or with pain at any time after admission were enrolled. The quality of pain management was evaluated according to information in the ED medical records by using a standardized collection form, and its impact on patients was recorded with a questionnaire at discharge. RESULTS: Two hundred forty-nine and 192 patients were included during pre- and postintervention periods. Pain was documented in 61% and 76% of nurse and physician notes, respectively, versus 78% and 85% after the intervention (difference 17%/9%; 95% confidence interval [CI] 8% to 26%/2% to 17%, respectively). Administration of analgesia increased from 40% to 63% (difference 23%; 95% CI 13% to 32%) and of morphine from 10% to 27% (difference 17%; 95% CI 10% to 24%). Mean doses of intravenous morphine increased from 2.4 mg (95% CI 1.9 to 2.9 mg) to 4.6 mg (95% CI 3.9 to 5.3 mg); administration of nonsteroidal antiinflammatory drugs and acetaminophen increased as well. There was a greater reduction of visual analogue scale score after intervention: 2.1 cm (95% CI 1.7 to 2.4 cm) versus 2.9 cm (95% CI 2.5 to 3.3 cm), which was associated with improved patient satisfaction. CONCLUSION: Education program and guidelines implementation for pain management lead to improved pain management, analgesia, and patient satisfaction in the ED.
Resumo:
Acute normocapnic hypoxemia can cause functional renal insufficiency by increasing renal vascular resistance (RVR), leading to renal hypoperfusion and decreased glomerular filtration rate (GFR). Insulin-like growth factor 1 (IGF-1) activity is low in fetuses and newborns and further decreases during hypoxia. IGF-1 administration to humans and adult animals induces pre- and postglomerular vasodilation, thereby increasing GFR and renal blood flow (RBF). A potential protective effect of IGF-1 on renal function was evaluated in newborn rabbits with hypoxemia-induced renal insufficiency. Renal function and hemodynamic parameters were assessed in 17 anesthetized and mechanically ventilated newborn rabbits. After hypoxemia stabilization, saline solution (time control) or IGF-1 (1 mg/kg) was given as an intravenous (i.v.) bolus, and renal function was determined for six 30-min periods. Normocapnic hypoxemia significantly increased RVR (+16%), leading to decreased GFR (-14%), RBF (-19%) and diuresis (-12%), with an increased filtration fraction (FF). Saline solution resulted in a worsening of parameters affected by hypoxemia. Contrarily, although mean blood pressure decreased slightly but significantly, IGF-1 prevented a further increase in RVR, with subsequent improvement of GFR, RBF and diuresis. FF indicated relative postglomerular vasodilation. Although hypoxemia-induced acute renal failure was not completely prevented, IGF-1 elicited efferent vasodilation, thereby precluding a further decline in renal function.
Resumo:
Many biotic and abiotic factors affect the persistence and activity of beneficial pseudomonads introduced into soil to suppress plant diseases. One such factor may be the presence of virulent bacteriophages that decimate the population of the introduced bacteria, thereby reducing their beneficial effect. We have isolated a lytic bacteriophage (phi)GP100) that specifically infects the biocontrol bacterium Pseudomonas fluorescens CHA0 and some closely related Pseudomonas strains. phiGP100 was found to be a double-stranded-DNA phage with an icosahedral head, a stubby tail, and a genome size of approximately 50 kb. Replication of phiGP100 was negatively affected at temperatures higher than 25 degrees C. phiGP100 had a negative impact on the population size and the biocontrol activity of P. fluorescens strain CHA0-Rif (a rifampicin-resistant variant of CHA0) in natural soil microcosms. In the presence of phiGP100, the population size of strain CHA0-Rif in soil and on cucumber roots was reduced more than 100-fold. As a consequence, the bacterium's capacity to protect cucumber against a root disease caused by the pathogenic oomycete Pythium ultimum was entirely abolished. In contrast, the phage affected neither root colonization and nor the disease suppressive effect of a phiDGP100-resistant variant of strain CHA0-Rif. To our knowledge, this study is the first to illustrate the potential of phages to impair biocontrol performance of beneficial bacteria released into the natural soil environment.