29 resultados para autocorrelation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disentangling the mechanisms mediating the coexistence of habitat specialists and generalists has been a long-standing subject of investigation. However, the roles of species traits and environmental and spatial factors have not been assessed in a unifying theoretical framework. Theory suggests that specialist species are more competitive in natural communities. However, empirical work has shown that specialist species are declining worldwide due to habitat loss and fragmentation. We addressed the question of the coexistence of specialist and generalist species with a spatially explicit metacommunity model in continuous and heterogeneous environments. We characterized how species' dispersal abilities, the number of interacting species, environmental spatial autocorrelation, and disturbance impact community composition. Our results demonstrated that species' dispersal ability and the number of interacting species had a drastic influence on the composition of metacommunities. More specialized species coexisted when species had large dispersal abilities and when the number of interacting species was high. Disturbance selected against highly specialized species, whereas environmental spatial autocorrelation had a marginal impact. Interestingly, species richness and niche breadth were mainly positively correlated at the community scale but were negatively correlated at the metacommunity scale. Numerous diversely specialized species can thus coexist, but both species' intrinsic traits and environmental factors interact to shape the specialization signatures of communities at both the local and global scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Identifying the boundary of a species' niche from observational and environmental data is a common problem in ecology and conservation biology and a variety of techniques have been developed or applied to model niches and predict distributions. Here, we examine the performance of some pattern-recognition methods as ecological niche models (ENMs). Particularly, one-class pattern recognition is a flexible and seldom used methodology for modelling ecological niches and distributions from presence-only data. The development of one-class methods that perform comparably to two-class methods (for presence/absence data) would remove modelling decisions about sampling pseudo-absences or background data points when absence points are unavailable. 2. We studied nine methods for one-class classification and seven methods for two-class classification (five common to both), all primarily used in pattern recognition and therefore not common in species distribution and ecological niche modelling, across a set of 106 mountain plant species for which presence-absence data was available. We assessed accuracy using standard metrics and compared trade-offs in omission and commission errors between classification groups as well as effects of prevalence and spatial autocorrelation on accuracy. 3. One-class models fit to presence-only data were comparable to two-class models fit to presence-absence data when performance was evaluated with a measure weighting omission and commission errors equally. One-class models were superior for reducing omission errors (i.e. yielding higher sensitivity), and two-classes models were superior for reducing commission errors (i.e. yielding higher specificity). For these methods, spatial autocorrelation was only influential when prevalence was low. 4. These results differ from previous efforts to evaluate alternative modelling approaches to build ENM and are particularly noteworthy because data are from exhaustively sampled populations minimizing false absence records. Accurate, transferable models of species' ecological niches and distributions are needed to advance ecological research and are crucial for effective environmental planning and conservation; the pattern-recognition approaches studied here show good potential for future modelling studies. This study also provides an introduction to promising methods for ecological modelling inherited from the pattern-recognition discipline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exchange matrices represent spatial weights as symmetric probability distributions on pairs of regions, whose margins yield regional weights, generally well-specified and known in most contexts. This contribution proposes a mechanism for constructing exchange matrices, derived from quite general symmetric proximity matrices, in such a way that the margin of the exchange matrix coincides with the regional weights. Exchange matrices generate in turn diffusive squared Euclidean dissimilarities, measuring spatial remoteness between pairs of regions. Unweighted and weighted spatial frameworks are reviewed and compared, regarding in particular their impact on permutation and normal tests of spatial autocorrelation. Applications include tests of spatial autocorrelation with diagonal weights, factorial visualization of the network of regions, multivariate generalizations of Moran's I, as well as "landscape clustering", aimed at creating regional aggregates both spatially contiguous and endowed with similar features.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After foot and/or ankle fracture, the restoration of optimal gait symmetry is one of the criteria of recovery. Orthotic insoles and orthopaedic shoes improve gait symmetry and regularity by controlling joint motion and improving alignment. The aim of the present study was to assess the effect of prescription footwear on gait quality by using accelerometers attached to the lower back. Sixteen adult patients with persistent disability after ankle and/or foot fractures performed two 30-s walking trials with and without prescription footwear (insoles and stabilizing shoes). Sixteen control subjects were also tested for comparison. The autocorrelation function was computed from the acceleration signal and the first two dominant periods were assessed (d1 and d2). Two parameters were used: (1) Stride Regularity (SR) which expresses the similarity between strides over time (d2), and (2) Stride Symmetry (SS) a ratio (d1/d2) which expresses the left/right similarity of gait independently of repeatability in the successive movements of each limb. In control subjects, SR and SS were 0.86+/-0.05 (correlation coefficient) and 81+/-10%, respectively. In the patient group, the effect of footwear was significant (SR: 0.88+/-0.06 vs. 0.90+/-0.05, SS: 38+/-23% vs. 46+/-27%). Pain was also significantly reduced (-34%). By using a rapid and low-cost method, we objectively quantified gait quality improvement after footwear intervention, concomitant to pain reduction. Substantial inter-patient variability in the footwear outcome was observed. In conclusion, we believe that trunk accelerometry can be a useful tool in the field of gait rehabilitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous sources of evidence point to the fact that heterogeneity within the Earth's deep crystalline crust is complex and hence may be best described through stochastic rather than deterministic approaches. As seismic reflection imaging arguably offers the best means of sampling deep crustal rocks in situ, much interest has been expressed in using such data to characterize the stochastic nature of crustal heterogeneity. Previous work on this problem has shown that the spatial statistics of seismic reflection data are indeed related to those of the underlying heterogeneous seismic velocity distribution. As of yet, however, the nature of this relationship has remained elusive due to the fact that most of the work was either strictly empirical or based on incorrect methodological approaches. Here, we introduce a conceptual model, based on the assumption of weak scattering, that allows us to quantitatively link the second-order statistics of a 2-D seismic velocity distribution with those of the corresponding processed and depth-migrated seismic reflection image. We then perform a sensitivity study in order to investigate what information regarding the stochastic model parameters describing crustal velocity heterogeneity might potentially be recovered from the statistics of a seismic reflection image using this model. Finally, we present a Monte Carlo inversion strategy to estimate these parameters and we show examples of its application at two different source frequencies and using two different sets of prior information. Our results indicate that the inverse problem is inherently non-unique and that many different combinations of the vertical and lateral correlation lengths describing the velocity heterogeneity can yield seismic images with the same 2-D autocorrelation structure. The ratio of all of these possible combinations of vertical and lateral correlation lengths, however, remains roughly constant which indicates that, without additional prior information, the aspect ratio is the only parameter describing the stochastic seismic velocity structure that can be reliably recovered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several models have been proposed to understand how so many species can coexist in ecosystems. Despite evidence showing that natural habitats are often patchy and fragmented, these models rarely take into account environmental spatial structure. In this study we investigated the influence of spatial structure in habitat and disturbance regime upon species' traits and species' coexistence in a metacommunity. We used a population-based model to simulate competing species in spatially explicit landscapes. The species traits we focused on were dispersal ability, competitiveness, reproductive investment and survival rate. Communities were characterized by their species richness and by the four life-history traits averaged over all the surviving species. Our results show that spatial structure and disturbance have a strong influence on the equilibrium life-history traits within a metacommunity. In the absence of disturbance, spatially structured landscapes favour species investing more in reproduction, but less in dispersal and survival. However, this influence is strongly dependent on the disturbance rate, pointing to an important interaction between spatial structure and disturbance. This interaction also plays a role in species coexistence. While spatial structure tends to reduce diversity in the absence of disturbance, the tendency is reversed when disturbance occurs. In conclusion, the spatial structure of communities is an important determinant of their diversity and characteristic traits. These traits are likely to influence important ecological properties such as resistance to invasion or response to climate change, which in turn will determine the fate of ecosystems facing the current global ecological crisis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dans cette thèse, nous étudions les aspects comportementaux d'agents qui interagissent dans des systèmes de files d'attente à l'aide de modèles de simulation et de méthodologies expérimentales. Chaque période les clients doivent choisir un prestataire de servivce. L'objectif est d'analyser l'impact des décisions des clients et des prestataires sur la formation des files d'attente. Dans un premier cas nous considérons des clients ayant un certain degré d'aversion au risque. Sur la base de leur perception de l'attente moyenne et de la variabilité de cette attente, ils forment une estimation de la limite supérieure de l'attente chez chacun des prestataires. Chaque période, ils choisissent le prestataire pour lequel cette estimation est la plus basse. Nos résultats indiquent qu'il n'y a pas de relation monotone entre le degré d'aversion au risque et la performance globale. En effet, une population de clients ayant un degré d'aversion au risque intermédiaire encoure généralement une attente moyenne plus élevée qu'une population d'agents indifférents au risque ou très averses au risque. Ensuite, nous incorporons les décisions des prestataires en leur permettant d'ajuster leur capacité de service sur la base de leur perception de la fréquence moyenne d'arrivées. Les résultats montrent que le comportement des clients et les décisions des prestataires présentent une forte "dépendance au sentier". En outre, nous montrons que les décisions des prestataires font converger l'attente moyenne pondérée vers l'attente de référence du marché. Finalement, une expérience de laboratoire dans laquelle des sujets jouent le rôle de prestataire de service nous a permis de conclure que les délais d'installation et de démantèlement de capacité affectent de manière significative la performance et les décisions des sujets. En particulier, les décisions du prestataire, sont influencées par ses commandes en carnet, sa capacité de service actuellement disponible et les décisions d'ajustement de capacité qu'il a prises, mais pas encore implémentées. - Queuing is a fact of life that we witness daily. We all have had the experience of waiting in line for some reason and we also know that it is an annoying situation. As the adage says "time is money"; this is perhaps the best way of stating what queuing problems mean for customers. Human beings are not very tolerant, but they are even less so when having to wait in line for service. Banks, roads, post offices and restaurants are just some examples where people must wait for service. Studies of queuing phenomena have typically addressed the optimisation of performance measures (e.g. average waiting time, queue length and server utilisation rates) and the analysis of equilibrium solutions. The individual behaviour of the agents involved in queueing systems and their decision making process have received little attention. Although this work has been useful to improve the efficiency of many queueing systems, or to design new processes in social and physical systems, it has only provided us with a limited ability to explain the behaviour observed in many real queues. In this dissertation we differ from this traditional research by analysing how the agents involved in the system make decisions instead of focusing on optimising performance measures or analysing an equilibrium solution. This dissertation builds on and extends the framework proposed by van Ackere and Larsen (2004) and van Ackere et al. (2010). We focus on studying behavioural aspects in queueing systems and incorporate this still underdeveloped framework into the operations management field. In the first chapter of this thesis we provide a general introduction to the area, as well as an overview of the results. In Chapters 2 and 3, we use Cellular Automata (CA) to model service systems where captive interacting customers must decide each period which facility to join for service. They base this decision on their expectations of sojourn times. Each period, customers use new information (their most recent experience and that of their best performing neighbour) to form expectations of sojourn time at the different facilities. Customers update their expectations using an adaptive expectations process to combine their memory and their new information. We label "conservative" those customers who give more weight to their memory than to the xiv Summary new information. In contrast, when they give more weight to new information, we call them "reactive". In Chapter 2, we consider customers with different degree of risk-aversion who take into account uncertainty. They choose which facility to join based on an estimated upper-bound of the sojourn time which they compute using their perceptions of the average sojourn time and the level of uncertainty. We assume the same exogenous service capacity for all facilities, which remains constant throughout. We first analyse the collective behaviour generated by the customers' decisions. We show that the system achieves low weighted average sojourn times when the collective behaviour results in neighbourhoods of customers loyal to a facility and the customers are approximately equally split among all facilities. The lowest weighted average sojourn time is achieved when exactly the same number of customers patronises each facility, implying that they do not wish to switch facility. In this case, the system has achieved the Nash equilibrium. We show that there is a non-monotonic relationship between the degree of risk-aversion and system performance. Customers with an intermediate degree of riskaversion typically achieve higher sojourn times; in particular they rarely achieve the Nash equilibrium. Risk-neutral customers have the highest probability of achieving the Nash Equilibrium. Chapter 3 considers a service system similar to the previous one but with risk-neutral customers, and relaxes the assumption of exogenous service rates. In this sense, we model a queueing system with endogenous service rates by enabling managers to adjust the service capacity of the facilities. We assume that managers do so based on their perceptions of the arrival rates and use the same principle of adaptive expectations to model these perceptions. We consider service systems in which the managers' decisions take time to be implemented. Managers are characterised by a profile which is determined by the speed at which they update their perceptions, the speed at which they take decisions, and how coherent they are when accounting for their previous decisions still to be implemented when taking their next decision. We find that the managers' decisions exhibit a strong path-dependence: owing to the initial conditions of the model, the facilities of managers with identical profiles can evolve completely differently. In some cases the system becomes "locked-in" into a monopoly or duopoly situation. The competition between managers causes the weighted average sojourn time of the system to converge to the exogenous benchmark value which they use to estimate their desired capacity. Concerning the managers' profile, we found that the more conservative Summary xv a manager is regarding new information, the larger the market share his facility achieves. Additionally, the faster he takes decisions, the higher the probability that he achieves a monopoly position. In Chapter 4 we consider a one-server queueing system with non-captive customers. We carry out an experiment aimed at analysing the way human subjects, taking on the role of the manager, take decisions in a laboratory regarding the capacity of a service facility. We adapt the model proposed by van Ackere et al (2010). This model relaxes the assumption of a captive market and allows current customers to decide whether or not to use the facility. Additionally the facility also has potential customers who currently do not patronise it, but might consider doing so in the future. We identify three groups of subjects whose decisions cause similar behavioural patterns. These groups are labelled: gradual investors, lumpy investors, and random investor. Using an autocorrelation analysis of the subjects' decisions, we illustrate that these decisions are positively correlated to the decisions taken one period early. Subsequently we formulate a heuristic to model the decision rule considered by subjects in the laboratory. We found that this decision rule fits very well for those subjects who gradually adjust capacity, but it does not capture the behaviour of the subjects of the other two groups. In Chapter 5 we summarise the results and provide suggestions for further work. Our main contribution is the use of simulation and experimental methodologies to explain the collective behaviour generated by customers' and managers' decisions in queueing systems as well as the analysis of the individual behaviour of these agents. In this way, we differ from the typical literature related to queueing systems which focuses on optimising performance measures and the analysis of equilibrium solutions. Our work can be seen as a first step towards understanding the interaction between customer behaviour and the capacity adjustment process in queueing systems. This framework is still in its early stages and accordingly there is a large potential for further work that spans several research topics. Interesting extensions to this work include incorporating other characteristics of queueing systems which affect the customers' experience (e.g. balking, reneging and jockeying); providing customers and managers with additional information to take their decisions (e.g. service price, quality, customers' profile); analysing different decision rules and studying other characteristics which determine the profile of customers and managers.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many questions in evolutionary biology require an estimate of divergence times but, for groups with a sparse fossil record, such estimates rely heavily on molecular dating methods. The accuracy of these methods depends on both an adequate underlying model and the appropriate implementation of fossil evidence as calibration points. We explore the effect of these in Poaceae (grasses), a diverse plant lineage with a very limited fossil record, focusing particularly on dating the early divergences in the group. We show that molecular dating based on a data set of plastid markers is strongly dependent on the model assumptions. In particular, an acceleration of evolutionary rates at the base of Poaceae followed by a deceleration in the descendants strongly biases methods that assume an autocorrelation of rates. This problem can be circumvented by using markers that have lower rate variation, and we show that phylogenetic markers extracted from complete nuclear genomes can be a useful complement to the more commonly used plastid markers. However, estimates of divergence times remain strongly affected by different implementations of fossil calibration points. Analyses calibrated with only macrofossils lead to estimates for the age of core Poaceae ∼51-55 Ma, but the inclusion of microfossil evidence pushes this age to 74-82 Ma and leads to lower estimated evolutionary rates in grasses. These results emphasize the importance of considering markers from multiple genomes and alternative fossil placements when addressing evolutionary issues that depend on ages estimated for important groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RésuméLa coexistence de nombreuses espèces différentes a de tout temps intrigué les biologistes. La diversité et la composition des communautés sont influencées par les perturbations et l'hétérogénéité des conditions environnementales. Bien que dans la nature la distribution spatiale des conditions environnementales soit généralement autocorrélée, cet aspect est rarement pris en compte dans les modèles étudiant la coexistence des espèces. Dans ce travail, nous avons donc abordé, à l'aide de simulations numériques, la coexistence des espèces ainsi que leurs caractéristiques au sein d'un environnement autocorrélé.Afin de prendre en compte cet élément spatial, nous avons développé un modèle de métacommunauté (un ensemble de communautés reliées par la dispersion des espèces) spatialement explicite. Dans ce modèle, les espèces sont en compétition les unes avec les autres pour s'établir dans un nombre de places limité, dans un environnement hétérogène. Les espèces sont caractérisées par six traits: optimum de niche, largeur de niche, capacité de dispersion, compétitivité, investissement dans la reproduction et taux de survie. Nous nous sommes particulièrement intéressés à l'influence de l'autocorrélation spatiale et des perturbations sur la diversité des espèces et sur les traits favorisés dans la métacommunauté. Nous avons montré que l'autocorrélation spatiale peut avoir des effets antagonistes sur la diversité, en fonction du taux de perturbations considéré. L'influence de l'autocorrélation spatiale sur la capacité de dispersion moyenne dans la métacommunauté dépend également des taux de perturbations et survie. Nos résultats ont aussi révélé que de nombreuses espèces avec différents degrés de spécialisation (i.e. différentes largeurs de niche) peuvent coexister. Toutefois, les espèces spécialistes sont favorisées en absence de perturbations et quand la dispersion est illimitée. A l'opposé, un taux élevé de perturbations sélectionne des espèces plus généralistes, associées avec une faible compétitivité.L'autocorrélation spatiale de l'environnement, en interaction avec l'intensité des perturbations, influence donc de manière considérable la coexistence ainsi que les caractéristiques des espèces. Ces caractéristiques sont à leur tour souvent impliquées dans d'importants processus, comme le fonctionnement des écosystèmes, la capacité des espèces à réagir aux invasions, à la fragmentation de l'habitat ou aux changements climatiques. Ce travail a permis une meilleure compréhension des mécanismes responsables de la coexistence et des caractéristiques des espèces, ce qui est crucial afin de prédire le devenir des communautés naturelles dans un environnement changeant.AbstractUnderstanding how so many different species can coexist in nature is a fundamental and long-standing question in ecology. Community diversity and composition are known to be influenced by heterogeneity in environmental conditions and disturbance. Though in nature the spatial distribution of environmental conditions is frequently autocorrelated, this aspect is seldom considered in models investigating species coexistence. In this work, we thus addressed several questions pertaining to species coexistence and composition in spatially autocorrelated environments, with a numerical simulations approach.To take into account this spatial aspect, we developed a spatially explicit model of metacommunity (a set of communities linked by dispersal of species). In this model, species are trophically equivalent, and compete for space in a heterogeneous environment. Species are characterized by six life-history traits: niche optimum, niche breadth, dispersal, competitiveness, reproductive investment and survival rate. We were particularly interested in the influence of environmental spatial autocorrelation and disturbance on species diversity and on the traits of the species favoured in the metacommunity. We showed that spatial autocorrelation can have antagonistic effects on diversity depending on disturbance rate. Similarly, spatial autocorrelation interacted with disturbance rate and survival rate to shape the mean dispersal ability observed in the metacommunity. Our results also revealed that many species with various degrees of specialization (i.e. different niche breadths) can coexist together. However specialist species were favoured in the absence of disturbance, and when dispersal was unlimited. In contrast, high disturbance rate selected for more generalist species, associated with low competitive ability.The spatial structure of the environment, together with disturbance and species traits, thus strongly impacts species diversity and, more importantly, species composition. Species composition is known to affect several important metacommunity properties such as ecosystem functioning, resistance and reaction to invasion, to habitat fragmentation and to climate changes. This work allowed a better understanding of the mechanisms responsible for species composition, which is of crucial importance to predict the fate of natural metacommunities in changing environments

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Biogeographical models of species' distributions are essential tools for assessing impacts of changing environmental conditions on natural communities and ecosystems. Practitioners need more reliable predictions to integrate into conservation planning (e.g. reserve design and management). 2. Most models still largely ignore or inappropriately take into account important features of species' distributions, such as spatial autocorrelation, dispersal and migration, biotic and environmental interactions. Whether distributions of natural communities or ecosystems are better modelled by assembling individual species' predictions in a bottom-up approach or modelled as collective entities is another important issue. An international workshop was organized to address these issues. 3. We discuss more specifically six issues in a methodological framework for generalized regression: (i) links with ecological theory; (ii) optimal use of existing data and artificially generated data; (iii) incorporating spatial context; (iv) integrating ecological and environmental interactions; (v) assessing prediction errors and uncertainties; and (vi) predicting distributions of communities or collective properties of biodiversity. 4. Synthesis and applications. Better predictions of the effects of impacts on biological communities and ecosystems can emerge only from more robust species' distribution models and better documentation of the uncertainty associated with these models. An improved understanding of causes of species' distributions, especially at their range limits, as well as of ecological assembly rules and ecosystem functioning, is necessary if further progress is to be made. A better collaborative effort between theoretical and functional ecologists, ecological modellers and statisticians is required to reach these goals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Species distribution models are increasingly used to address conservation questions, so their predictive capacity requires careful evaluation. Previous studies have shown how individual factors used in model construction can affect prediction. Although some factors probably have negligible effects compared to others, their relative effects are largely unknown. 2. We introduce a general "virtual ecologist" framework to study the relative importance of factors involved in the construction of species distribution models. 3. We illustrate the framework by examining the relative importance of five key factors-a missing covariate, spatial autocorrelation due to a dispersal process in presences/absences, sample size, sampling design and modeling technique-in a real study framework based on plants in a mountain landscape at regional scale, and show that, for the parameter values considered here, most of the variation in prediction accuracy is due to sample size and modeling technique. Contrary to repeatedly reported concerns, spatial autocorrelation has only comparatively small effects. 4. This study shows the importance of using a nested statistical framework to evaluate the relative effects of factors that may affect species distribution models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AimOur aim was to understand the interplay of heterogeneous climatic and spatial landscapes in shaping the distribution of nuclear microsatellite variation in burrowing parrots, Cyanoliseus patagonus. Given the marked phenotypic differences between populations of burrowing parrots we hypothesized an important role of geographical as well climatic heterogeneity in the population structure of this species. LocationSouthern South America. MethodsWe applied a landscape genetics approach to investigate the explicit patterns of genetic spatial autocorrelation based on both geography and climate using spatial principal component analysis (sPCA). This necessitated a novel statistical estimation of the species climatic landscape, considering temperature- and precipitation-based variables separately to evaluate their weight in shaping the distribution of genetic variation in our model system. ResultsGeographical and climatic heterogeneity successfully explained molecular variance in burrowing parrots. sPCA divided the species distribution into two main areas, Patagonia and the pre-Andes, which were connected by an area of geographical and climatic transition. Moreover, sPCA revealed cryptic and conservation-relevant genetic structure: the pre-Andean populations and the transition localities were each divided into two groups, each management units for conservation. Main conclusionssPCA, a method originally developed for spatial genetics, allowed us to unravel the genetic structure related to spatial and climatic landscapes and to visualize these patterns in landscape space. These novel climatic inferences underscore the importance of our modified sPCA approach in revealing how climatic variables can drive cryptic patterns of genetic structure, making the approach potentially useful in the study of any species distributed over a climatically heterogeneous landscape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AimHigh intra-specific genetic diversity is necessary for species adaptation to novel environments under climate change, but species tracking suitable conditions are losing alleles through successive founder events during range shift. Here, we investigated the relationship between range shift since the Last Glacial Maximum (LGM) and extant population genetic diversity across multiple plant species to understand variability in species responses. LocationThe circumpolar Arctic and northern temperate alpine ranges. MethodsWe estimated the climatic niches of 30 cold-adapted plant species using range maps coupled with species distribution models and hindcasted species suitable areas to reconstructions of the mid-Holocene and LGM climates. We computed the species-specific migration distances from the species glacial refugia to their current distribution and correlated distances to extant genetic diversity in 1295 populations. Differential responses among species were related to life-history traits. ResultsWe found a negative association between inferred migration distances from refugia and genetic diversities in 25 species, but only 11 had statistically significant negative slopes. The relationships between inferred distance and population genetic diversity were steeper for insect-pollinated species than wind-pollinated species, but the difference among pollination system was marginally independent from phylogenetic autocorrelation. Main conclusionThe relationships between inferred migration distances and genetic diversities in 11 species, independent from current isolation, indicate that past range shifts were associated with a genetic bottleneck effect with an average of 21% loss of genetic diversity per 1000km(-1). In contrast, the absence of relationship in many species also indicates that the response is species specific and may be modulated by plant pollination strategies or result from more complex historical contingencies than those modelled here.