18 resultados para asynchronous circuits and systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinematics of the anatomical shoulder are analysed and modelled as a parallel mechanism similar to a Stewart platform. A new method is proposed to describe the shoulder kinematics with minimal coordinates and solve the indeterminacy. The minimal coordinates are defined from bony landmarks and the scapulothoracic kinematic constraints. Independent from one another, they uniquely characterise the shoulder motion. A humanoid mechanism is then proposed with identical kinematic properties. It is then shown how minimal coordinates can be obtained for this mechanism and how the coordinates simplify both the motion-planning task and trajectory-tracking control. Lastly, the coordinates are also shown to have an application in the field of biomechanics where they can be used to model the scapulohumeral rhythm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long recognized as the standard general reference in the field, this completely revised edition of Grainger and Allison's Diagnostic Radiology provides all the information that a trainee needs to master to successfully take their professional certification examinations as well as providing the practicing radiologist with a refresher on topics that may have been forgotten. Organized along an organ and systems basis, this resource covers all diagnostic imaging modalities in an integrated, correlative fashion and focuses on those topics that really matter to a trainee radiologist in the initial years of training

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NMDA receptor (NMDAR)-dependent forms of synaptic plasticity are thought to underlie the assembly of developing neuronal circuits and to play a crucial role in learning and memory. It remains unclear how NMDAR might contribute to the wiring of adult-born granule cells (GCs). Here we demonstrate that nascent GCs lacking NMDARs but rescued from apoptosis by overexpressing the pro-survival protein Bcl2 were deficient in spine formation. Insufficient spinogenesis might be a general cause of cell death restricted within the NMDAR-dependent critical time window for GC survival. NMDAR loss also led to enhanced mushroom spine formation and synaptic AMPAR activity throughout the development of newborn GCs. Moreover, similar elevated synapse maturation in the absence of NMDARs was observed in neonate-generated GCs and CA1 pyramidal neurons. Together, these data suggest that NMDAR operates as a molecular monitor for controlling the activity-dependent establishment and maturation rate of synaptic connections between newborn neurons and others.