37 resultados para artificial shade
Resumo:
Introduction and objectives: The AMS 800TM is considered the gold standard for sphincter replacement. However, the one-ring design can erode the urethra and lead to severe complications. A mechanism that could alternatively compress successive segments of the urethra would limit such deleterious outcome. We report 12 weeks animal urethral tissue analysis following implantation of a new modular artificial sphincter. METHODS: The device is composed by three parts: the contractile unit, two rings and an integrated microprocessor. The contractile unit is made of Nitinol fibers. The rings are placed around the urethra to control the flow of urine by squeezing the urethra. They work in a sequential alternative mode and are controlled by a microprocessor connected to an external computer. The computer can reveal specific failure of device components. The device was impkanted in eight male sheep. The rings were positioned around the urethra and the control unit was placed 5cm away. The device was working twenty hours per day; it was open 10min. per hour to allow urination. The animals were sacrificed after 12 weeks. The urethra and the tissues surrounding the control unit were macroscopically and microscopically examined. Two transversal sections crossing the sphincter and two transversal sections crossing the urethra alone were obtained and stained with modified Paragon after resin embedding. Urethra was also embedded in paraffin. The first section was stained with safranin-hematoxylin-eosin, the second section was stained with Masson's Trichrome and the remaining eight sections were available for immunolabelling of the macrophages.Results: The chronic study went uneventful. No clinical infection or pain was observed. The computer registered no specific failure in ring function, Nitinol wires and tube connectors. At explantation, except for a slight grade of lymphocytes in two out of eight specimens, no urethral stricture or atrophy could be observed. Immunohistochemistry confirmed the absence of macrophages. Tissue structure and organization of the urethra with and without artificial sphincter were similar. No migration of the device was observed.Conclusions: The study clearly showed no tissue damage or inflammation of the urethra. Electronic design, preservation of urethral vascularisation and adjustability after implantation are the key ideas to improve the actual AUS. Further studies will be carried out to evaluate this potential.
Resumo:
Plant growth and development are particularly sensitive to changes in the light environment and especially to vegetational shading. The shade-avoidance response is mainly controlled by the phytochrome photoreceptors. In Arabidopsis, recent studies have identified several related bHLH class transcription factors (PIF, for phytochrome-interacting factors) as important components in phytochrome signaling. In addition to a related bHLH domain, most of the PIFs contain an active phytochrome binding (APB) domain that mediates their interaction with light-activated phytochrome B (phyB). Here we show that PIF4 and PIF5 act early in the phytochrome signaling pathways to promote the shade-avoidance response. PIF4 and PIF5 accumulate to high levels in the dark, are selectively degraded in response to red light, and remain at high levels under shade-mimicking conditions. Degradation of these transcription factors is preceded by phosphorylation, requires the APB domain and is sensitive to inhibitors of the proteasome, suggesting that PIF4 and PIF5 are degraded upon interaction with light-activated phyB. Our data suggest that, in dense vegetation, which is rich in far-red light, shade avoidance is triggered, at least partially, as a consequence of reduced phytochrome-mediated degradation of transcription factors such as PIF4 and PIF5. Consistent with this idea, the constitutive shade-avoidance phenotype of phyB mutants partially reverts in the absence of PIF4 and PIF5
Resumo:
Tat activates transcription by interacting with Sp1, NF-kappaB, positive transcription elongation factor b, and trans-activator-responsive element (TAR). Tat and Sp1 play major roles in transcription by protein-protein interactions at human immunodeficiency virus, type 1 (HIV-1) long terminal repeat. Sp1 activates transcription by interacting with cyclin T1 in the absence of Tat. To disrupt the transcription activation by Tat and Sp1, we fused Sp1-inhibiting polypeptides, zinc finger polypeptide, and the TAR-binding mutant Tat (TatdMt) together. A designed or natural zinc finger and Tat mutant fusion was used to target the fusion to the key regulatory sites (GC box and TAR) on the long terminal repeat and nascent short transcripts to disrupt the molecular interaction that normally result in robust transcription. The designed zinc finger and TatdMt fusions were targeted to the TAR, and they potently repressed both transcription and replication of HIV-1. The Sp1-inhibiting POZ domain, TatdMt, and zinc fingers are key functional domains important in repression of transcription and replication. The designed artificial zinc fingers were targeted to the high affinity Sp1-binding site, and by being fused with TatdMt and POZ domain, they strongly block both Sp1-cyclin T1-dependent transcription and Tat-dependent transcription, even in the presence of excess expressed Tat.
Resumo:
Objectives: The AMS 800 is the current artifi cial urinary sphincter (AUS) forincontinence due to intrinsic sphincter defi ciency. Despite good clinical results,technical failures inherent to the hydraulic mechanism or urethral ischemicinjury contribute to revisions up to 60%. We are developing an electronic AUS,called ARTUS to overcome the rigors of AMS. The objective of this study wasto evaluate the technical effi cacy and tissue tolerance of the ARTUS systemin an animal model.Methods: The ARTUS is composed by three parts: thecontractile unit, a series of rings and an integrated microprocessor. The contractileunit is made of Nitinol fi bers. The rings are placed around the urethrato control the fl ow of urine by squeezing the urethra. They work in a sequentialalternative mode and are controlled by a microprocessor. In the fi rst phase athree-rings device was used while in the second phase a two-rings ARTUS wasused. The device was implanted in 14 sheep divided in two groups of six andeight animals for study purpose. The fi rst group aimed at bladder leak pointpressure (BLPP) measurement and validation of the animal model; the secondgroup aimed at verifying midterm tissue tolerance by explants at twelve weeks.General animal tolerance was also evaluated.Results: The ARTUS systemimplantation was uneventful. When the system was activated, the BLPP wasmeasured at 1.038 ± 0.044 bar (mean ± SD). Urethral tissue analysis did notshow signifi cant morphological changes. No infection and no sign of discomfortwere noted in animals at 12 weeks.Conclusions: The ARTUS proved to beeffective in continence achievement in this study. Histological results supportour idea that a sequential alternative mode can avoid urethral atrophy andischemia. Further technical developments are needed to verify long-termoutcome and permit human use.
Resumo:
Severe heart failure and cerebral stroke are broadly associated with the impairment of muscular function that conventional treatments struggle to restore. New technologies enable the construction of "smart" materials that could be of great help in treating diseases where the main problem is muscle weakness. These materials "behave" similarly to biological systems, because the material directly converts energy, for example electrical energy into movement. The extension and contraction occur silently like in natural muscles. The real challenge is to transfer this amazing technology into devices that restore or replace the mechanical function of failing muscle. Cardiac assist devices based on artificial muscle technology could envelope a weak heart and temporarily improve its systolic function, or, if placed on top of the atrium, restore the atrial kick in chronic atrial fibrillation. Artificial sphincters could be used to treat urinary incontinence after prostatectomy or faecal incontinence associated with stomas. Artificial muscles can restore the ability of patients with facial paralysis due to stroke or nerve injury to blink. Smart materials could be used to construct an artificial oesophagus including peristaltic movement and lower oesophageal sphincter function to replace the diseased oesophagus thereby avoiding the need for laparotomy to mobilise stomach or intestine. In conclusion, in the near future, smart devices will integrate with the human body to fill functional gaps due to organ failure, and so create a human chimera.
Resumo:
Plants compete with neighbouring vegetation for limited resources. In competition for light, plants adjust their architecture to bring the leaves higher in the vegetation where more light is available than in the lower strata. These architectural responses include accelerated elongation of the hypocotyl, internodes and petioles, upward leaf movement (hyponasty), and reduced shoot branching and are collectively referred to as the shade avoidance syndrome. This review discusses various cues that plants use to detect the presence and proximity of neighbouring competitors and respond to with the shade avoidance syndrome. These cues include light quality and quantity signals, mechanical stimulation, and plant-emitted volatile chemicals. We will outline current knowledge about each of these signals individually and discuss their possible interactions. In conclusion, we will make a case for a whole-plant, ecophysiology approach to identify the relative importance of the various neighbour detection cues and their possible interactions in determining plant performance during competition.
Resumo:
We describe a device made of artificial muscle for the treatment of end-stage heart failure as an alternative to current heart assist devices. The key component is a matrix of nitinol wires and aramidic fibers called Biometal muscle (BM). When heated electrically, it produces a motorless, smooth, and lifelike motion. The BM is connected to a carbon fiber scaffold, tightening the heart and providing simultaneous assistance to the left and right ventricles. A pacemaker-like microprocessor drives the contraction of the BM. We tested the device in a dedicated bench model of diseased heart. It generated a systolic pressure of 75 mm Hg and ejected a maximum of 330 ml/min, with an ejection fraction of 12%. The device required a power supply of 6 V, 250 mA. This could be the beginning of an era in which BMs integrate or replace the mechanical function of natural muscles.
Resumo:
Plants such as Arabidopsis thaliana respond to foliar shade and neighbors who may become competitors for light resources by elongation growth to secure access to unfiltered sunlight. Challenges faced during this shade avoidance response (SAR) are different under a light-absorbing canopy and during neighbor detection where light remains abundant. In both situations, elongation growth depends on auxin and transcription factors of the phytochrome interacting factor (PIF) class. Using a computational modeling approach to study the SAR regulatory network, we identify and experimentally validate a previously unidentified role for long hypocotyl in far red 1, a negative regulator of the PIFs. Moreover, we find that during neighbor detection, growth is promoted primarily by the production of auxin. In contrast, in true shade, the system operates with less auxin but with an increased sensitivity to the hormonal signal. Our data suggest that this latter signal is less robust, which may reflect a cost-to-robustness tradeoff, a system trait long recognized by engineers and forming the basis of information theory.
Resumo:
Artificial radionuclides ((137)Cs, (90)Sr, Pu, and (241)Am) are present in soils because of Nuclear Weapon Tests and accidents in nuclear facilities. Their distribution in soil depth varies according to soil characteristics, their own chemical properties, and their deposition history. For this project, we studied the atmospheric deposition of (137)Cs, (90)Sr, Pu, (241)Am, (210)Pb, and stable Pb. We compared the distribution of these elements in soil profiles from different soil types from an alpine Valley (Val Piora, Switzerland) with the distribution of selected major and trace elements in the same soils. Our goals were to explain the distribution of the radioisotopes as a function of soil parameters and to identify stable elements with analogous behaviors. We found that Pu and (241)Am are relatively immobile and accumulate in the topsoil. In all soils, (90)Sr is more mobile and shows some accumulations at depth into Fe-Al rich horizons. This behavior is also observed for Cu and Zn, indicating that these elements may be used as chemical analogues for the migration of (90)Sr into the soil.
Resumo:
The generic concept of the artificial meteorite experiment STONE is to fix rock samples bearing microorganisms on the heat shield of a recoverable space capsule and to study their modifications during atmospheric re-entry. The STONE-5 experiment was performed mainly to answer astrobiological questions. The rock samples mounted on the heat shield were used (i) as a carrier for microorganisms and (ii) as internal control to verify whether physical conditions during atmospheric re-entry were comparable to those experienced by "real" meteorites. Samples of dolerite (an igneous rock), sandstone (a sedimentary rock), and gneiss impactite from Haughton Crater carrying endolithic cyanobacteria were fixed to the heat shield of the unmanned recoverable capsule FOTON-M2. Holes drilled on the back side of each rock sample were loaded with bacterial and fungal spores and with dried vegetative cryptoendoliths. The front of the gneissic sample was also soaked with cryptoendoliths. <p>The mineralogical differences between pre- and post-flight samples are detailed. Despite intense ablation resulting in deeply eroded samples, all rocks in part survived atmospheric re-entry. Temperatures attained during re-entry were high enough to melt dolerite, silica, and the gneiss impactite sample. The formation of fusion crusts in STONE-5 was a real novelty and strengthens the link with real meteorites. The exposed part of the dolerite is covered by a fusion crust consisting of silicate glass formed from the rock sample with an admixture of holder material (silica). Compositionally, the fusion crust varies from silica-rich areas (undissolved silica fibres of the holder material) to areas whose composition is "basaltic". Likewise, the fusion crust on the exposed gneiss surface was formed from gneiss with an admixture of holder material. The corresponding composition of the fusion crust varies from silica-rich areas to areas with "gneiss" composition (main component potassium-rich feldspar). The sandstone sample was retrieved intact and did not develop a fusion crust. Thermal decomposition of the calcite matrix followed by disintegration and liberation of the silicate grains prevented the formation of a melt.</p> <p>Furthermore, the non-exposed surface of all samples experienced strong thermal alterations. Hot gases released during ablation pervaded the empty space between sample and sample holder leading to intense local heating. The intense heating below the protective sample holder led to surface melting of the dolerite rock and to the formation of calcium-silicate rims on quartz grains in the sandstone sample. (c) 2008 Elsevier Ltd. All rights reserved.</p>
Resumo:
The remarkable plasticity of their architecture allows plants to adjust growth to the environment and to overcome adverse conditions. Two examples of environmental stresses that drastically affect shoot development are imminent shade and high temperature. Plants in crowded environments and plants in elevated ambient temperature display very similar phenotypic adaptations of elongated hypocotyls in seedlings and elevated and elongated leaves at later developmental stages. The comparable growth responses to shade and high temperature are partly regulated through shared signaling pathways, of which the phytohormone auxin and the phytochrome interacting factors (PIFs) are important components. During both shade- and temperature-induced elongation growth auxin biosynthesis and signaling are upregulated in a PIF-dependent manner. In this review we will discuss recent progress in our understanding of how auxin mediates architectural adaptations to shade and high temperature.