33 resultados para apoptotic peak
Resumo:
The TNF family ligand B cell-activating factor (BAFF, BLyS, TALL-1) is an essential factor for B cell development. BAFF binds to three receptors, BAFF-R, transmembrane activator and CAML interactor (TACI), and B cell maturation antigen (BCMA), but only BAFF-R is required for successful survival and maturation of splenic B cells. To test whether the effect of BAFF is due to the up-regulation of anti-apoptotic factors, TACI-Ig-transgenic mice, in which BAFF function is inhibited, were crossed with transgenic mice expressing FLICE-inhibitory protein (FLIP) or Bcl-2 in the B cell compartment. FLIP expression did not rescue B cells, while enforced Bcl-2 expression restored peripheral B cells and the ability to mount T-dependent antibody responses. However, many B cells retained immaturity markers and failed to express normal amounts of CD21. Marginal zone B cells were not restored and the T-independent IgG3, but not IgM, response was impaired in the TACI-IgxBcl-2 mice. These results suggest that BAFF is required not only to inhibit apoptosis of maturating B cells, but also to promote differentiation events, in particular those leading to the generation of marginal zone B cells.
Resumo:
A current paradigm proposes that mitochondrial damage is a critical determinant of NLRP3 inflammasome activation. Here, we genetically assess whether mitochondrial signalling represents a unified mechanism to explain how NLRP3 is activated by divergent stimuli. Neither co-deletion of the essential executioners of mitochondrial apoptosis BAK and BAX, nor removal of the mitochondrial permeability transition pore component cyclophilin D, nor loss of the mitophagy regulator Parkin, nor deficiency in MAVS affects NLRP3 inflammasome function. In contrast, caspase-8, a caspase essential for death-receptor-mediated apoptosis, is required for efficient Toll-like-receptor-induced inflammasome priming and cytokine production. Collectively, these results demonstrate that mitochondrial apoptosis is not required for NLRP3 activation, and highlight an important non-apoptotic role for caspase-8 in regulating inflammasome activation and pro-inflammatory cytokine levels.
Resumo:
PPARalpha and PPARbeta are expressed in the mouse epidermis during fetal development, but their expression progressively disappears after birth. However, the expression of PPARbeta is reactivated in adult mice upon proliferative stimuli, such as cutaneous injury. We show here that PPARbeta protects keratinocytes from growth factor deprivation, anoikis and TNF-alpha-induced apoptosis, by modulating both early and late apoptotic events via the Akt1 signaling pathway and DNA fragmentation, respectively. The control mechanisms involve direct transcriptional upregulation of ILK, PDK1, and ICAD-L. In accordance with the anti-apoptotic role of PPARbeta observed in vitro, the balance between proliferation and apoptosis is altered in the epidermis of wounded PPARbeta mutant mice, with increased keratinocyte proliferation and apoptosis. In addition, primary keratinocytes deleted for PPARbeta show defects in both cell-matrix and cell-cell contacts, and impaired cell migration. Together, these results suggest that the delayed wound closure observed in PPARbeta mutant mice involves the alteration of several key processes. Finally, comparison of PPARbeta and Akt1 knock-out mice reveals many similarities, and suggests that the ability of PPARbeta to modulate the Akt1 pathway has significant impact during skin wound healing.
Resumo:
Vaccinia virus (VACV) encodes an anti-apoptotic Bcl-2-like protein F1 that acts as an inhibitor of caspase-9 and of the Bak/Bax checkpoint but the role of this gene in immune responses is not known. Because dendritic cells that have phagocytosed apoptotic infected cells cross-present viral antigens to cytotoxic T cells inducing an antigen-specific immunity, we hypothesized that deletion of the viral anti-apoptotic F1L gene might have a profound effect on the capacity of poxvirus vectors to activate specific immune responses to virus-expressed recombinant antigens. This has been tested in a mouse model with an F1L deletion mutant of the HIV/AIDS vaccine candidate MVA-C that expresses Env and Gag-Pol-Nef antigens (MVA-C-ΔF1L). The viral gene F1L is not required for virus replication in cultured cells and its deletion in MVA-C induces extensive apoptosis and expression of immunomodulatory genes in infected cells. Analysis of the immune responses induced in BALB/c mice after DNA prime/MVA boost revealed that, in comparison with parental MVA-C, the mutant MVA-C-ΔF1L improves the magnitude of the HIV-1-specific CD8 T cell adaptive immune responses and impacts on the CD8 T cell memory phase by enhancing the magnitude of the response, reducing the contraction phase and changing the memory differentiation pattern. These findings reveal the immunomodulatory role of F1L and that the loss of this gene is a valid strategy for the optimization of MVA as vaccine vector.
Resumo:
The cell surface receptor Fas (FasR, Apo-1, CD95) and its ligand (FasL) are mediators of apoptosis that have been shown to be implicated in the peripheral deletion of autoimmune cells, activation-induced T cell death, and one of the two major cytolytic pathways mediated by CD8+ cytolytic T cells. To gain further understanding of the Fas system., we have analyzed Fas and FasL expression during mouse development and in adult tissues. In developing mouse embryos, from 16.5 d onwards, Fas mRNA is detectable in distinct cell types of the developing sinus, thymus, lung, and liver, whereas FasL expression is restricted to submaxillary gland epithelial cells and the developing nervous system. Significant Fas and FasL expression were observed in several nonlymphoid cell types during embryogenesis, and generally Fas and FasL expression were not localized to characteristic sites of programmed cell death. In the adult mouse, RNase protection analysis revealed very wide expression of both Fas and FasL. Several tissues, including the thymus, lung, spleen, small intestine, large intestine, seminal vesicle, prostate, and uterus, clearly coexpress the two genes. Most tissues constitutively coexpressing Fas and FasL in the adult mouse are characterized by apoptotic cell turnover, and many of those expressing FasL are known to be immune privileged. It may be, therefore, that the Fas system is implicated in both the regulation of physiological cell turnover and the protection of particular tissues against potential lymphocyte-mediated damage.
Resumo:
The caspase-3/p120 RasGAP module acts as a stress sensor that promotes pro-survival or pro-death signaling depending on the intensity and the duration of the stressful stimuli. Partial cleavage of p120 RasGAP generates a fragment, called fragment N, which protects stressed cells by activating Akt signaling. Akt family members regulate many cellular processes including proliferation, inhibition of apoptosis and metabolism. These cellular processes are regulated by three distinct Akt isoforms: Akt1, Akt2 and Akt3. However, which of these isoforms are required for fragment N mediated protection have not been defined. In this study, we investigated the individual contribution of each isoform in fragment N-mediated cell protection against Fas ligand induced cell death. To this end, DLD1 and HCT116 isogenic cell lines lacking specific Akt isoforms were used. It was found that fragment N could activate Akt1 and Akt2 but that only the former could mediate the protective activity of the RasGAP-derived fragment. Even overexpression of Akt2 or Akt3 could not rescue the inability of fragment N to protect cells lacking Akt1. These results demonstrate a strict Akt isoform requirement for the anti-apoptotic activity of fragment N.
Resumo:
Induction of apoptosis of virus-infected cells is an important host cell defence mechanism. However, some viruses have incorporated genes that encode anti-apoptotic proteins or modulate the expression of cellular regulators of apoptosis. Here, Edgar Meinl and colleagues discuss recent evidence that viral interference with host cell apoptosis leads to enhanced viral replication, and to evasion of cytotoxic T-cell effects.
Resumo:
Islet-Brain 1, also known as JNK-interacting protein-1 (IB1/JIP-1) is a scaffold protein mainly involved in the regulation of the pro-apoptotic signalling cascade mediated by c-Jun-N-terminal kinase (JNK). IB1/JIP-1 organizes JNK and upstream kinases in a complex that facilitates JNK activation. However, overexpression of IB1/JIP-1 in neurons in vitro has been reported to result in inhibition of JNK activation and protection against cellular stress and apoptosis. The occurrence and the functional significance of stress-induced modulations of IB1/JIP-1 levels in vivo are not known. We investigated the regulation of IB1/JIP-1 in mouse hippocampus after systemic administration of kainic acid (KA), in wild-type mice as well as in mice hemizygous for the gene MAPK8IP1, encoding for IB1/JIP-1. We show here that IB1/JIP-1 is upregulated transiently in the hippocampus of normal mice, reaching a peak 8 h after seizure induction. Heterozygous mutant mice underexpressing IB1/JIP-1 showed a higher vulnerability to the epileptogenic properties of KA, whereas hippocampal IB1/JIP-1 levels remained unchanged after seizure induction. Subsequently, an increasing activation of JNK in the 8 h following seizure induction was observed in IB1/JIP-1 haploinsufficient mice, which also underwent more severe excitotoxic lesions in hippocampal CA3, as assessed histologically 3 days after KA administration. Taken together, these data indicate that IB1/JIP-1 in hippocampus participates in the regulation of the neuronal response to excitotoxic stress in a level-dependent fashion.
Resumo:
En 1981, le gouvernement de l'Alberta a amélioré la surveillance de la pointe sud « South Peak » de la montagne Turtle, sur la frontière sud du glissement Frank de 1903. Le programme de surveillance vise à comprendre les taux de déformation des fissures larges et profondes sur « South Peak », et à prédire une seconde avalanche rocheuse sur la montagne. Le programme de surveillance consiste à installer un complément de points statiques et de stations suivies à distance, qui sont mesurés périodiquement. Des données climatiques, microsismiques et de déformation sont recueillies automatiquement à intervalles journaliers, et sont archivées. À la fin des années 1980, le financement pour le développement du programme de surveillance a cessé et quelques installations se sont détériorées. Entre mai 2004 et septembre 2006, des lectures sur les points de surveillance encore fonctionnels ont été compilées et interprétées. De plus, les lectures prélevées auparavant ont été réinterprétées à partir des connaissances récentes sur les modèles de mouvement à court terme et les influences climatiques. Ces observations ont été comparées à des récentes observations aériennes d'un modèle digital d'élévation, provenant de « light detection and ranging (LiDAR) », et des photos de terrain, afin d'estimer plus précisément les taux, l'étendue et la distribution des mouvements pour les derniers 25 ans.
Resumo:
Metadherin (MTDH), the newly discovered gene, is overexpressed in more than 40% of breast cancers. Recent studies have revealed that MTDH favors an oncogenic course and chemoresistance. With a number of breast cancer cell lines and breast tumor samples, we found that the relative expression of MTDH correlated with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitivity in breast cancer. In this study, we found that knockdown of endogenous MTDH cells sensitized the MDA-MB-231 cells to TRAIL-induced apoptosis both in vitro and in vivo. Conversely, stable overexpression of MTDH in MCF-7 cells enhanced cell survival with TRAIL treatment. Mechanically, MTDH down-regulated caspase-8, decreased caspase-8 recruitment into the TRAIL death-inducing signaling complex, decreased caspase-3 and poly(ADP-ribose) polymerase-2 processing, increased Bcl-2 expression, and stimulated TRAIL-induced Akt phosphorylation, without altering death receptor status. In MDA-MB-231 breast cancer cells, sensitization to TRAIL upon MTDH down-regulation was inhibited by the caspase inhibitor Z-VAD-fmk (benzyloxycarbonyl-VAD-fluoromethyl ketone), suggesting that MTDH depletion stimulates activation of caspases. In MCF-7 breast cancer cells, resistance to TRAIL upon MTDH overexpression was abrogated by depletion of Bcl-2, suggesting that MTDH-induced Bcl-2 expression contributes to TRAIL resistance. We further confirmed that MTDH may control Bcl-2 expression partly by suppressing miR-16. Collectively, our results point to a protective function of MTDH against TRAIL-induced death, whereby it inhibits the intrinsic apoptosis pathway through miR-16-mediated Bcl-2 up-regulation and the extrinsic apoptosis pathway through caspase-8 down-regulation.
Resumo:
Résumé La masse de cellules β sécrétrices d'insuline est un tissu dynamique qui s'adapte aux variations de la demande métabolique pour assurer une normoglycémie. Cette adaptation se fait par un changement de sécrétion d'insuline et de la masse totale des cellules β. Une perte complète ou partielle des cellules β conduit respectivement à un diabète de type 1 et de type 2. Les mécanismes qui régulent la masse de cellules β et maintiennent leur phénotype differencié sont encore peu connus. Leur identification est nécessaire pour comprendre le développement du diabète et développer des stratégies de traitement. La greffe d'îlots est une approche thérapeutique prometteuse pour le diabète de type 1, mais est limitée par une perte précoce des cellules β due à une apoptose induite par des cytokines. Afin d'améliorer la survie des cellules β lors de la greffe d'îlots, le premier but était de trouver des peptides pouvant bloquer l'apoptose induite par FasL et TNF-α. Pour ce faire, deux librairies de phages ont été criblées pour sélectionner des peptides se liant au Fas DD ou au TNFRl DD. Nous avons identifié six peptides différents. Cependant, aucun d'entre eux n'était capable de protéger les cellules de l'apoptose induite par FasL ou TNF-α. Deuxièmement, le GLP-1 est une hormone qui stimule la sécrétion d'insuline, et est impliquée dans la prolifération des cellules β, la différentiation, et inhibe l'apoptose. Nous avons fait l'hypothèse que le GLP-1 joue un rôle crucial dans le contrôle de la masse et de la fonction des cellules β. Afin de l'évaluer, une analyse par puce à ADN a été réalisée en comparant des cellules βTC-Tet traitées avec du GLP-1 à des cellules non-traitées. 376 gènes régulés ont été identifiés, dont RGS2, CREM, ICERI et DUSP14, augmentés significativement par le GLP-1. Nous avons confirmé que le GLP-1 augmente l'expression de ces gènes, aussi bien au niveau des transcripts que des protéines. De plus, nous avons montré que le GLP-1 induit leur expression par activation de la voie cAMP/PKA, et nécessite l'entrée de calcium extracellulaire. D'après leur fonction biologique, nous avons ensuite supposé que ces gènes pourraient agir comme régulateurs négatifs de la signalisation du GLP-l, et donc freiner son effet proliférateur. Pour vérifier notre hypothèse, des siRNAs contre ces gènes ont été développés, et leurs effets sur la prolifération des cellules β seront évalués ultérieurement. Abstract The pancreatic β-cell mass is a dynamic tissue which adapts to variations in metabolic demand in order to ensure normoglycemia. This adaptation occurs through a change in both insulin secretion and the total mass of ,β-cells. An absolute or relative loss of β-cells leads to type 1 and type 2 diabetes, respectively. The mechanisms that regulate the pancreatic β-cell mass and maintain the fully differentiated phenotype of the insulin-secreting β-cells are only poorly defined. Their identification is required to understand the progression of diabetes, but also to design strategies for the treatment of diabetes. Islet transplantation is a promising therapeutic approach for type 1 diabetes, but it is still limited by an early graft loss due to cytokine-induced apoptosis. In order to improve β-cell survival during islet transplantation, our first goal was to find novel blockers of FasL- and TNF-α-mediated cell death in the form of peptides. To that end, we screened two phage display libraries to select Fas DD- or TNFR1 DD-binding peptides. We identified six different small peptides. However, none of these peptides was able to prevent cells from FasL- or TNF-α-mediated apoptosis. Secondly, GLP-1 is a hormone that has been shown to stimulate insulin secretion and to be involved in β-cell proliferation, differentiation and inhibition of apoptosis. We hypothesized that GLP-1 plays a crucial role to control mass and function of β-cells. To evaluate this hypothesis, we performed a cDNA microarray analysis with GLP-1-treated βTC-Tet cells compared to untreated cells. We found 376 regulated genes, among these, RGS2, CREM, ICERI and DUSP14, which were significantly upregulated by GLP-1. We confirmed that both their mRNA and protein levels were strongly and rapidly increased after GLP-1 treatment. Moreover, we found that GLP-1 activates their expression mainly through the activation of the cAMP/PKA signaling pathway, and requires extracellular calcium entry. According to their biological function, we then hypothesized that these genes might act as negative regulators of the GLP-1 signaling. In particular, they might brake the effects of GLP-1 on β-cell proliferation. To verify this hypothesis, siRNAs against these genes were developed. The effect of these siRNAs on GLP-1-induced β-cell proliferation will be evaluated later.
Resumo:
New methods and devices for pursuing performance enhancement through altitude training were developed in Scandinavia and the USA in the early 1990s. At present, several forms of hypoxic training and/or altitude exposure exist: traditional 'live high-train high' (LHTH), contemporary 'live high-train low' (LHTL), intermittent hypoxic exposure during rest (IHE) and intermittent hypoxic exposure during continuous session (IHT). Although substantial differences exist between these methods of hypoxic training and/or exposure, all have the same goal: to induce an improvement in athletic performance at sea level. They are also used for preparation for competition at altitude and/or for the acclimatization of mountaineers. The underlying mechanisms behind the effects of hypoxic training are widely debated. Although the popular view is that altitude training may lead to an increase in haematological capacity, this may not be the main, or the only, factor involved in the improvement of performance. Other central (such as ventilatory, haemodynamic or neural adaptation) or peripheral (such as muscle buffering capacity or economy) factors play an important role. LHTL was shown to be an efficient method. The optimal altitude for living high has been defined as being 2200-2500 m to provide an optimal erythropoietic effect and up to 3100 m for non-haematological parameters. The optimal duration at altitude appears to be 4 weeks for inducing accelerated erythropoiesis whereas <3 weeks (i.e. 18 days) are long enough for beneficial changes in economy, muscle buffering capacity, the hypoxic ventilatory response or Na(+)/K(+)-ATPase activity. One critical point is the daily dose of altitude. A natural altitude of 2500 m for 20-22 h/day (in fact, travelling down to the valley only for training) appears sufficient to increase erythropoiesis and improve sea-level performance. 'Longer is better' as regards haematological changes since additional benefits have been shown as hypoxic exposure increases beyond 16 h/day. The minimum daily dose for stimulating erythropoiesis seems to be 12 h/day. For non-haematological changes, the implementation of a much shorter duration of exposure seems possible. Athletes could take advantage of IHT, which seems more beneficial than IHE in performance enhancement. The intensity of hypoxic exercise might play a role on adaptations at the molecular level in skeletal muscle tissue. There is clear evidence that intense exercise at high altitude stimulates to a greater extent muscle adaptations for both aerobic and anaerobic exercises and limits the decrease in power. So although IHT induces no increase in VO(2max) due to the low 'altitude dose', improvement in athletic performance is likely to happen with high-intensity exercise (i.e. above the ventilatory threshold) due to an increase in mitochondrial efficiency and pH/lactate regulation. We propose a new combination of hypoxic method (which we suggest naming Living High-Training Low and High, interspersed; LHTLHi) combining LHTL (five nights at 3000 m and two nights at sea level) with training at sea level except for a few (2.3 per week) IHT sessions of supra-threshold training. This review also provides a rationale on how to combine the different hypoxic methods and suggests advances in both their implementation and their periodization during the yearly training programme of athletes competing in endurance, glycolytic or intermittent sports.
Resumo:
We previously showed in a 3D rat brain cell in vitro model for glutaric aciduria type-I that repeated application of 1mM 3-hydroxy-glutarate (3-OHGA) caused ammonium accumulation, morphologic alterations and induction of non-apoptotic cell death in developing brain cells. Here, we performed a dose-response study with lower concentrations of 3- OHGA.We exposed our cultures to 0.1, 0.33 and 1mM 3-OHGA every 12h over three days at two developmental stages (DIV5-8 and DIV11-14). Ammonium accumulation was observed at both stages starting from 0.1mM 3-OHGA, in parallel with a glutamine decrease. Morphological changes started at 0.33mM with loss of MBP expression and loss of astrocytic processes. Neurons were not substantially affected. At DIV8, release of LDH in the medium and cellular TUNEL staining increased from 0.1mM and 0.33mM 3-OHGA exposure, respectively. No increase in activated caspase-3 was observed. We confirmed ammonium accumulation and non-apoptotic cell death of brain cells in our in vitro model at lower 3-OHGA concentrations thus strongly suggesting that the observed effects are likely to take place in the brain of affected patients. The concomitant glutamine decrease suggests a defect in the astrocyte ammonium buffering system. Ammonium accumulation might be the cause of non-apoptotic cell death.
Horizontal transfer of exosomal microRNAs transduce apoptotic signals between pancreatic beta-cells.
Resumo:
BACKGROUND: Diabetes mellitus is a common metabolic disorder characterized by dysfunction of insulin-secreting pancreatic beta-cells. MicroRNAs are important regulators of beta-cell activities. These non-coding RNAs have recently been discovered to exert their effects not only inside the cell producing them but, upon exosome-mediated transfer, also in other recipient cells. This novel communication mode remains unexplored in pancreatic beta-cells. In the present study, the microRNA content of exosomes released by beta-cells in physiological and physiopathological conditions was analyzed and the biological impact of their transfer to recipient cells investigated. RESULTS: Exosomes were isolated from the culture media of MIN6B1 and INS-1 derived 832/13 beta-cell lines and from mice, rat or human islets. Global profiling revealed that the microRNAs released in MIN6B1 exosomes do not simply reflect the content of the cells of origin. Indeed, while a subset of microRNAs was preferentially released in exosomes others were selectively retained in the cells. Moreover, exposure of MIN6B1 cells to inflammatory cytokines changed the release of several microRNAs. The dynamics of microRNA secretion and their potential transfer to recipient cells were next investigated. As a proof-of-concept, we demonstrate that if cel-miR-238, a C. Elegans microRNA not present in mammalian cells, is expressed in MIN6B1 cells a fraction of it is released in exosomes and is transferred to recipient beta-cells. Furthermore, incubation of untreated MIN6B1 or mice islet cells in the presence of microRNA-containing exosomes isolated from the culture media of cytokine-treated MIN6B1 cells triggers apoptosis of recipient cells. In contrast, exosomes originating from cells not exposed to cytokines have no impact on cell survival. Apoptosis induced by exosomes produced by cytokine-treated cells was prevented by down-regulation of the microRNA-mediating silencing protein Ago2 in recipient cells, suggesting that the effect is mediated by the non-coding RNAs. CONCLUSIONS: Taken together, our results suggest that beta-cells secrete microRNAs that can be transferred to neighboring beta-cells. Exposure of donor cells to pathophysiological conditions commonly associated with diabetes modifies the release of microRNAs and affects survival of recipient beta-cells. Our results support the concept that exosomal microRNAs transfer constitutes a novel cell-to-cell communication mechanism regulating the activity of pancreatic beta-cells.