33 resultados para angiotensin analogs
Resumo:
BACKGROUND: We conducted a randomized, phase II, multicenter study to evaluate the anti-epidermal growth factor receptor (EGFR) mAb panitumumab (P) in combination with chemoradiotherapy (CRT) with standard-dose capecitabine as neoadjuvant treatment for wild-type KRAS locally advanced rectal cancer (LARC). PATIENTS AND METHODS: Patients with wild-type KRAS, T3-4 and/or N+ LARC were randomly assigned to receive CRT with or without P (6 mg/kg). The primary end-point was pathological near-complete or complete tumor response (pNC/CR), defined as grade 3 (pNCR) or 4 (pCR) histological regression by Dworak classification (DC). RESULTS: Forty of 68 patients were randomly assigned to P + CRT and 28 to CRT. pNC/CR was achieved in 21 patients (53%) treated with P + CRT [95% confidence interval (CI) 36%-69%] versus 9 patients (32%) treated with CRT alone (95% CI: 16%-52%). pCR was achieved in 4 (10%) and 5 (18%) patients, and pNCR in 17 (43%) and 4 (14%) patients. In immunohistochemical analysis, most DC 3 cells were not apoptotic. The most common grade ≥3 toxic effects in the P + CRT/CRT arm were diarrhea (10%/6%) and anastomotic leakage (15%/4%). CONCLUSIONS: The addition of panitumumab to neoadjuvant CRT in patients with KRAS wild-type LARC resulted in a high pNC/CR rate, mostly grade 3 DC. The results of both treatment arms exceeded prespecified thresholds. The addition of panitumumab increased toxicity.
Resumo:
Chronic blockade of the renin angiotensin system became possible when orally active inhibitors of angiotensin converting enzyme, the enzyme which catalyzes the transformation of angiotensin I into angiotensin II, were synthetized. Two compounds, captopril and enalapril, have been investigated in clinical studies. The decrease of the pressor response to exogenous angiotensin I and of the circulating levels of angiotensin II following administration of these inhibitors has been demonstrated to be directly related to the degree of suppression of plasma angiotensin converting enzyme activity. These inhibitors have been shown to normalize blood pressure alone in some hypertensive patients whereas in many others, satisfactory blood pressure control can be achieved only after the addition of a diuretic. Captopril and enalapril also markedly improve cardiac function of patients with chronic congestive heart failure. Chronic blockade of the renin angiotensin system has therefore provided an interesting new approach to the treatment of clinical hypertension and heart failure.
Resumo:
Taking advantage of homeostatic mechanisms to boost tumor-specific cellular immunity is raising increasing interest in the development of therapeutic strategies in the treatment of melanoma. Here, we have explored the potential of combining homeostatic proliferation, after transient immunosuppression, and antigenic stimulation of Melan-A/Mart-1 specific CD8 T-cells. In an effort to develop protocols that could be readily applicable to the clinic, we have designed a phase I clinical trial, involving lymphodepleting chemotherapy with Busulfan and Fludarabine, reinfusion of Melan-A specific CD8 T-cell containing peripheral blood mononuclear cells (exempt of growth factors), and Melan-A peptide vaccination. Six patients with advanced melanoma were enrolled in this outpatient regimen that demonstrated good feasibility combined with low toxicity. Consistent depletion of lymphocytes with persistent increased CD4/CD8 ratios was induced, although the proportion of circulating CD4 regulatory T-cells remained mostly unchanged. The study of the immune reconstitution period showed a steady recovery of whole T-cell numbers overtime. However, expansion of Melan-A specific CD8 T-cells, as measured in peripheral blood, was mostly inconsistent, accompanied with marginal phenotypic changes, despite vaccination with Melan-A/Mart-1 peptide. On the clinical level, 1 patient presented a partial but objective antitumor response following the beginning of the protocol, even though a direct effect of Busulfan/Fludarabine cannot be completely ruled out. Overall, these data provide further ground for the development of immunotherapeutic approaches to be both effective against melanoma and applicable in clinic.
Resumo:
Characterize ethylbenzene and xylene air concentrations, and explore the biological exposure markers (urinary t,t-muconic acid (t,t-MA) and unmetabolized toluene) among petroleum workers offshore. Offshore workers have increased health risks due to simultaneous exposures to several hydrocarbons present in crude oil. We discuss the pooled benzene exposure results from our previous and current studies and possible co-exposure interactions. BTEX air concentrations were measured during three consecutive 12-h work shifts among 10 tank workers, 15 process operators, and 18 controls. Biological samples were collected pre-shift on the first day of study and post-shift on the third day of the study. The geometric mean exposure over the three work shifts were 0.02 ppm benzene, 0.05 ppm toluene, 0.03 ppm ethylbenzene, and 0.06 ppm xylene. Benzene in air was significantly correlated with unmetabolized benzene in blood (r = 0.69, p < 0.001) and urine (r = 0.64, p < 0.001), but not with urinary t,t-MA (r = 0.27, p = 0.20). Toluene in air was highly correlated with the internal dose of toluene in both blood (r = 0.70, p < 0.001) and urine (r = 0.73, p < 0.001). Co-exposures were present; however, an interaction of metabolism was not likely at these low benzene and toluene exposures. Urinary benzene, but not t,t-MA, was a reliable biomarker for benzene at low exposure levels. Urinary toluene was a useful biomarker for toluene exposure. Xylene and ethylbenzene air levels were low. Dermal exposure assessment needs to be performed in future studies among these workers.
Resumo:
Astrocytes are the most abundant glial cell type in the brain. Although not apposite for long-range rapid electrical communication, astrocytes share with neurons the capacity of chemical signaling via Ca(2+)-dependent transmitter exocytosis. Despite this recent finding, little is known about the specific properties of regulated secretion and vesicle recycling in astrocytes. Important differences may exist with the neuronal exocytosis, starting from the fact that stimulus-secretion coupling in astrocytes is voltage independent, mediated by G-protein-coupled receptors and the release of Ca(2+) from internal stores. Elucidating the spatiotemporal properties of astrocytic exo-endocytosis is, therefore, of primary importance for understanding the mode of communication of these cells and their role in brain signaling. We here take advantage of fluorescent tools recently developed for studying recycling of glutamatergic vesicles at synapses (Voglmaier et al., 2006; Balaji and Ryan, 2007); we combine epifluorescence and total internal reflection fluorescence imaging to investigate with unprecedented temporal and spatial resolution, the stimulus-secretion coupling underlying exo-endocytosis of glutamatergic synaptic-like microvesicles (SLMVs) in astrocytes. Our main findings indicate that (1) exo-endocytosis in astrocytes proceeds with a time course on the millisecond time scale (tau(exocytosis) = 0.24 +/- 0.017 s; tau(endocytosis) = 0.26 +/- 0.03 s) and (2) exocytosis is controlled by local Ca(2+) microdomains. We identified submicrometer cytosolic compartments delimited by endoplasmic reticulum tubuli reaching beneath the plasma membrane and containing SLMVs at which fast (time-to-peak, approximately 50 ms) Ca(2+) events occurred in precise spatial-temporal correlation with exocytic fusion events. Overall, the above characteristics of transmitter exocytosis from astrocytes support a role of this process in fast synaptic modulation.
Resumo:
Patients with glioblastoma (GBM) have variable clinical courses, but the factors that underlie this heterogeneity are not understood. To determine whether the presence of the telomerase-independent alternative lengthening of telomeres (ALTs) mechanism is a significant prognostic factor for survival, we performed a retrospective analysis of 573 GBM patients. The presence of ALT was identified in paraffin sections using a combination of immunofluorescence for promyelocytic leukemia body and telomere fluorescence in situ hybridization. Alternative lengthening of telomere was present in 15% of the GBM patients. Patients with ALT had longer survival that was independent of age, surgery, and other treatments. Mutations in isocitrate dehydrogenase (IDH1mut) 1 frequently accompanied ALT, and in the presence of both molecular events, there was significantly longer overall survival. These data suggest that most ALT+ tumors may be less aggressive proneural GBMs, and the better prognosis may relate to the set of genetic changes associated with this tumor subtype. Despite improved overall survival of patients treated with the addition of chemotherapy to radiotherapy and surgery, ALT and chemotherapy independently provided a survival advantage, but these factors were not found to be additive. These results suggest a critical need for developing new therapies to target these specific GBM subtypes.
Resumo:
The concept that optic nerve fiber loss might be reduced by neuroprotection arose in the mid 1990s. The subsequent research effort, focused mainly on rodent models, has not yet transformed into a successful clinical trial, but provides mechanistic understanding of retinal ganglion cell death and points to potential therapeutic strategies. This review highlights advances made over the last year. In excitotoxicity and axotomy models retinal ganglion cell death has been shown to result from a complex interaction between retinal neurons and Müller glia, which release toxic molecules including tumor necrosis factor alpha. This counteracts neuroprotection by neurotrophins such as nerve growth factor, which bind to p75NTR receptors on Müller glia stimulating the toxic release. Another negative effect against neurotrophin-mediated protection involves the action of LINGO-1 at trkB brain-derived neurotrophic factor (BDNF) receptors, and BDNF neuroprotection is enhanced by an antagonist to LINGO-1. As an alternative to pharmacotherapy, retinal defences can be stimulated by exposure to infrared radiation. The mechanisms involved in glaucoma and other optic nerve disorders are being clarified in rodent models, focusing on retrograde degeneration following axonal damage, excitotoxicity and inflammatory/autoimmune mechanisms. Neuroprotective strategies are being refined in the light of the mechanistic understanding.
Resumo:
In this review, we discuss genetic evidence supporting Guyton's hypothesis stating that blood pressure control is critically depending on fluid handling by the kidney. The review is focused on the genetic dissection of sodium and potassium transport in the distal nephron and the collecting duct that are the most important sites for the control of sodium and potassium balance by aldosterone and angiotensin II. Thanks to the study of Mendelian forms of hypertension and their corresponding transgenic mouse models, three main classes of diuretic receptors (furosemide, thiazide, amiloride) and the main components of the aldosterone- and angiotensin-dependent signaling pathways were molecularly identified over the past 20years. This will allow to design rational strategies for the treatment of hypertension and for the development of the next generation of diuretics.
Resumo:
In response to stress or injury the heart undergoes an adverse remodeling process associated with cardiomyocyte hypertrophy and fibrosis. Transformation of cardiac fibroblasts to myofibroblasts is a crucial event initiating the fibrotic process. Cardiac myofibroblasts invade the myocardium and secrete excess amounts of extracellular matrix proteins, which cause myocardial stiffening, cardiac dysfunctions and progression to heart failure. While several studies indicate that the small GTPase RhoA can promote profibrotic responses, the exchange factors that modulate its activity in cardiac fibroblasts are yet to be identified. In the present study, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor (GEF) activity, is critical for activating RhoA and transducing profibrotic signals downstream of type I angiotensin II receptors (AT1Rs) in cardiac fibroblasts. In particular, our results indicate that suppression of AKAP-Lbc expression by infecting adult rat ventricular fibroblasts with lentiviruses encoding AKAP-Lbc specific short hairpin (sh) RNAs strongly reduces the ability of angiotensin II to promote RhoA activation, differentiation of cardiac fibroblasts to myofibroblasts, collagen deposition as well as myofibroblast migration. Interestingly, AT1Rs promote AKAP-Lbc activation via a pathway that requires the α subunit of the heterotrimeric G protein G12. These findings identify AKAP-Lbc as a key Rho-guanine nucleotide exchange factor modulating profibrotic responses in cardiac fibroblasts.
Resumo:
BACKGROUND: Neuroendocrine neoplasms (NENs) are difficult to diagnose. We used SwissNET data to characterise NEN patients followed in the two academic centres of western Switzerland (WS), and to compare them with patients followed in eastern Switzerland (ES) as well as with international guidelines. METHOD: SwissNET is a prospective database covering data from 522 consecutive patients (285 men, 237 women) from WS (n = 99) and ES (n = 423). RESULTS: Mean ± SD age at diagnosis was 59.0 ± 15.7 years. Overall, 76/522 experienced a functional syndrome, with a median interval of 1.0 (IQR: 1.0-3.0) year between symptoms onset and diagnosis. A total of 51/522 of these tumours were incidental. The primary tumour site was the small intestine (29%), pancreas (21%), appendix (18%) and lung (11%) in both regions combined. In all, 513 functional imaging studies were obtained (139 in WS, 374 in ES). Of these, 381 were 111In-pentetreotide scintigraphies and 20 were 68Ga-DOTATOC PET. First line therapy was surgery in 87% of patients, medical therapy (biotherapy or chemotherapy) in 9% and irradiation in 3% for both regions together. CONCLUSION: Swiss NEN patients appear similar to what has been described in the literature. Imaging by somatostatin receptor scintigraphy (SRS) is widely used in both regions of Switzerland. In good accordance with published guidelines, data on first line therapy demonstrate the crucial role of surgery. The low incidence of biotherapy suggests that long-acting somatostatin analogues are not yet widely used for their anti-proliferative effects. The SwissNET initiative should help improve compliance with ENETS guidelines in the workup and care of NEN patients.
Resumo:
OBJECTIVE: Recent pharmacologic studies in our laboratory have suggested that the spinal neuropeptide Y (NPY) Y1 receptor contributes to pain inhibition and to the analgesic effects of NPY. To rule out off-target effects, the present study used Y1-receptor-deficient (-/-) mice to further explore the contribution of Y1 receptors to pain modulation. METHODS AND RESULTS: Y1(-/-) mice exhibited reduced latency in the hotplate test of acute pain and a longer-lasting heat allodynia in the complete Freund's adjuvant (CFA) model of inflammatory pain. Y1 deletion did not change CFA-induced inflammation. Upon targeting the spinal NPY systems with intrathecal drug delivery, NPY reduced tactile and heat allodynia in the CFA model and the partial sciatic nerve ligation model of neuropathic pain. Importantly, we show for the first time that NPY does not exert these anti-allodynic effects in Y1(-/-) mice. Furthermore, in nerve-injured CD1 mice, concomitant injection of the potent Y1 antagonist BIBO3304 prevented the anti-allodynic actions of NPY. Neither NPY nor BIBO3304 altered performance on the Rotorod test, arguing against an indirect effect of motor function. CONCLUSION: The Y1 receptor contributes to pain inhibition and to the analgesic effects of NPY.
Resumo:
Oral antiepileptic drugs (AEDs) represent possible add-on options in refractory status epilepticus (SE). In this setting, pregabalin (PGB) has not been reported before. Over the last 42 months, we identified 11 SE episodes (10 patients) treated with PGB in our hospital. Its use was prompted by the favorable pharmacokinetic profile, devoid of drug-drug interactions. The patients mostly had refractory, partial SE. Only two patients were managed in the intensive care unit (ICU). We found a definite electroclinical response in 5 of 11, already evident 24 h after PGB introduction, and a possible response (concomitantly with other AEDs) in 3 of 11 of the episodes; 3/11 did not respond. The treatment was well tolerated. Partial SE appeared to better respond than generalized convulsive SE. PGB appears to be an interesting option as add-on treatment in refractory partial SE.
Resumo:
The nuclear peroxisome proliferator-activated receptors (PPARs) alpha, beta, and gamma activate the transcription of multiple genes involved in lipid metabolism. Several natural and synthetic ligands have been identified for each PPAR isotype but little is known about the phosphorylation state of these receptors. We show here that activators of protein kinase A (PKA) can enhance mouse PPAR activity in the absence and the presence of exogenous ligands in transient transfection experiments. Activation function 1 (AF-1) of PPARs was dispensable for transcriptional enhancement, whereas activation function 2 (AF-2) was required for this effect. We also show that several domains of PPAR can be phosphorylated by PKA in vitro. Moreover, gel retardation experiments suggest that PKA stabilizes binding of the liganded PPAR to DNA. PKA inhibitors decreased not only the kinase-dependent induction of PPARs but also their ligand-dependent induction, suggesting an interaction between both pathways that leads to maximal transcriptional induction by PPARs. Moreover, comparing PPAR alpha knockout (KO) with PPAR alpha WT mice, we show that the expression of the acyl CoA oxidase (ACO) gene can be regulated by PKA-activated PPAR alpha in liver. These data demonstrate that the PKA pathway is an important modulator of PPAR activity, and we propose a model associating this pathway in the control of fatty acid beta-oxidation under conditions of fasting, stress, and exercise.