34 resultados para Welding automation
Resumo:
Because of the emergence of dried blood spots (DBS) as an attractive alternative to conventional venous plasma sampling in many pharmaceutical companies and clinical laboratories, different analytical approaches have been developed to enable automated handling of DBS samples without any pretreatment. Associated with selective and sensitive MS-MS detection, these procedures give good results in the rapid identification and quantification of drugs (generally less than 3 min total run time), which is desirable because of the high throughput requirements of analytical laboratories. The objective of this review is to describe the analytical concepts of current direct DBS techniques and to present their advantages and disadvantages, with particular focus on automation capacity and commercial availability. Finally, an overview of the different biomedical applications in which these concepts could be of major interest will be presented.
Resumo:
Purpose. This study was conducted to determine whether newer infrared or laser welding technologies created joints superior to traditional furnace or torch soldering methods of joining metals. It was designed to assess the mechanical resistance, the characteristics of the fractured surfaces, and the elemental diffusion of joints obtained by four different techniques: (1) preceramic soldering with a propane-oxygen torch, (2) postceramic soldering with a porcelain furnace, (3) preceramic and (4) postceramic soldering with an infrared heat source, and (5) laser welding. Material and methods. Mechanical resistance was determined by measuring the ultimate tensile strength of the joint and by determining their resistance to fatigue loading. Elemental diffusion to and from the joint was assessed with microprobe tracings. Scanning electron microscopy micrographs of the fractured surface were also obtained and evaluated. Results. Under monotonic tensile stress, three groups emerged: The laser welds were the strongest, the preceramic joints ranged second, and the postceramic joints were the weakest. Under fatigue stress, the order was as follows: first, the preceramic joints, and second, a group that comprised both postceramic joints and the laser welds. Inspection of the fractographs revealed several fracture modes but no consistent pattern emerged. Microprobe analyses demonstrated minor diffusion processes in the preceramic joints, whereas significant diffusion was observed in the postceramic joints. Clinical Implications. The mechanical resistance data conflicted as to the strength that could be expected of laser welded joints. On the basis of fatigue resistance of the joints, neither infrared solder joints nor laser welds were stronger than torch or furnace soldered joints.
Resumo:
Using optimized voxel-based morphometry, we performed grey matter density analyses on 59 age-, sex- and intelligence-matched young adults with three distinct, progressive levels of musical training intensity or expertise. Structural brain adaptations in musicians have been repeatedly demonstrated in areas involved in auditory perception and motor skills. However, musical activities are not confined to auditory perception and motor performance, but are entangled with higher-order cognitive processes. In consequence, neuronal systems involved in such higher-order processing may also be shaped by experience-driven plasticity. We modelled expertise as a three-level regressor to study possible linear relationships of expertise with grey matter density. The key finding of this study resides in a functional dissimilarity between areas exhibiting increase versus decrease of grey matter as a function of musical expertise. Grey matter density increased with expertise in areas known for their involvement in higher-order cognitive processing: right fusiform gyrus (visual pattern recognition), right mid orbital gyrus (tonal sensitivity), left inferior frontal gyrus (syntactic processing, executive function, working memory), left intraparietal sulcus (visuo-motor coordination) and bilateral posterior cerebellar Crus II (executive function, working memory) and in auditory processing: left Heschl's gyrus. Conversely, grey matter density decreased with expertise in bilateral perirolandic and striatal areas that are related to sensorimotor function, possibly reflecting high automation of motor skills. Moreover, a multiple regression analysis evidenced that grey matter density in the right mid orbital area and the inferior frontal gyrus predicted accuracy in detecting fine-grained incongruities in tonal music.
Resumo:
A significant part of daily energy expenditure may be attributed to non-exercise activity thermogenesis and exercise activity thermogenesis. Automatic recognition of postural allocations such as standing or sitting can be used in behavioral modification programs aimed at minimizing static postures. In this paper we propose a shoe-based device and related pattern recognition methodology for recognition of postural allocations. Inexpensive technology allows implementation of this methodology as a part of footwear. The experimental results suggest high efficiency and reliability of the proposed approach.
3D seismic facies characterization and geological patterns recognition (Australian North West Shelf)
Resumo:
EXECUTIVE SUMMARY This PhD research, funded by the Swiss Sciences Foundation, is principally devoted to enhance the recognition, the visualisation and the characterization of geobodies through innovative 3D seismic approaches. A series of case studies from the Australian North West Shelf ensures the development of reproducible integrated 3D workflows and gives new insight into local and regional stratigraphic as well as structural issues. This project was initiated in year 2000 at the Geology and Palaeontology Institute of the University of Lausanne (Switzerland). Several collaborations ensured the improvement of technical approaches as well as the assessment of geological models. - Investigations into the Timor Sea structural style were carried out at the Tectonics Special Research Centre of the University of Western Australia and in collaboration with Woodside Energy in Perth. - Seismic analysis and attributes classification approach were initiated with Schlumberger Oilfield Australia in Perth; assessments and enhancements of the integrated seismic approaches benefited from collaborations with scientists from Schlumberger Stavanger Research (Norway). Adapting and refining from "linear" exploration techniques, a conceptual "helical" 3D seismic approach has been developed. In order to investigate specific geological issues this approach, integrating seismic attributes and visualisation tools, has been refined and adjusted leading to the development of two specific workflows: - A stratigraphic workflow focused on the recognition of geobodies and the characterization of depositional systems. Additionally, it can support the modelling of the subsidence and incidentally the constraint of the hydrocarbon maturity of a given area. - A structural workflow used to quickly and accurately define major and secondary fault systems. The integration of the 3D structural interpretation results ensures the analysis of the fault networks kinematics which can affect hydrocarbon trapping mechanisms. The application of these integrated workflows brings new insight into two complex settings on the Australian North West Shelf and ensures the definition of astonishing stratigraphic and structural outcomes. The stratigraphic workflow ensures the 3D characterization of the Late Palaeozoic glacial depositional system on the Mermaid Nose (Dampier Subbasin, Northern Carnarvon Basin) that presents similarities with the glacial facies along the Neotethys margin up to Oman (chapter 3.1). A subsidence model reveals the Phanerozoic geodynamic evolution of this area (chapter 3.2) and emphasizes two distinct mode of regional extension for the Palaeozoic (Neotethys opening) and Mesozoic (abyssal plains opening). The structural workflow is used for the definition of the structural evolution of the Laminaria High area (Bonaparte Basin). Following a regional structural characterization of the Timor Sea (chapter 4.1), a thorough analysis of the Mesozoic fault architecture reveals a local rotation of the stress field and the development of reverse structures (flower structures) in extensional setting, that form potential hydrocarbon traps (chapter 4.2). The definition of the complex Neogene structural architecture associated with the fault kinematic analysis and a plate flexure model (chapter 4.3) suggest that the Miocene to Pleistocene reactivation phases recorded at the Laminaria High most probably result from the oblique normal reactivation of the underlying Mesozoic fault planes. This episode is associated with the deformation of the subducting Australian plate. Based on these results three papers were published in international journals and two additional publications will be submitted. Additionally this research led to several communications in international conferences. Although the different workflows presented in this research have been primarily developed and used for the analysis of specific stratigraphic and structural geobodies on the Australian North West Shelf, similar integrated 3D seismic approaches will have applications to hydrocarbon exploration and production phases; for instance increasing the recognition of potential source rocks, secondary migration pathways, additional traps or reservoir breaching mechanisms. The new elements brought by this research further highlight that 3D seismic data contains a tremendous amount of hidden geological information waiting to be revealed and that will undoubtedly bring new insight into depositional systems, structural evolution and geohistory of the areas reputed being explored and constrained and other yet to be constrained. The further development of 3D texture attributes highlighting specific features of the seismic signal, the integration of quantitative analysis for stratigraphic and structural processes, the automation of the interpretation workflow as well as the formal definition of "seismo-morphologic" characteristics of a wide range of geobodies from various environments would represent challenging examples of continuation of this present research. The 21st century will most probably represent a transition period between fossil and other alternative energies. The next generation of seismic interpreters prospecting for hydrocarbon will undoubtedly face new challenges mostly due to the shortage of obvious and easy targets. They will probably have to keep on integrating techniques and geological processes in order to further capitalise the seismic data for new potentials definition. Imagination and creativity will most certainly be among the most important quality required from such geoscientists.
Resumo:
BACKGROUND: HIV-1 RNA viral load is a key parameter for reliable treatment monitoring of HIV-1 infection. Accurate HIV-1 RNA quantitation can be impaired by primer and probe sequence polymorphisms as a result of tremendous genetic diversity and ongoing evolution of HIV-1. A novel dual HIV-1 target amplification approach was realized in the quantitative COBAS AmpliPrep/COBAS TaqMan HIV-1 Test, v2.0 (HIV-1 TaqMan test v2.0) to cope with the high genetic diversity of the virus. OBJECTIVES AND STUDY DESIGN: The performance of the new assay was evaluated for sensitivity, dynamic range, precision, subtype inclusivity, diagnostic and analytical specificity, interfering substances, and correlation with the COBAS AmpliPrep/COBAS TaqMan HIV-1 (HIV-1 TaqMan test v1.0) predecessor test in patients specimens. RESULTS: The new assay demonstrated a sensitivity of 20 copies/mL, a linear measuring range of 20-10,000,000 copies/mL, with a lower limit of quantitation of 20 copies/mL. HIV-1 Group M subtypes and HIV-1 Group O were quantified within +/-0.3 log(10) of the assigned titers. Specificity was 100% in 660 tested specimens, no cross reactivity was found for 15 pathogens nor any interference for endogenous substances or 29 drugs. Good comparability with the predecessor assay was demonstrated in 82 positive patient samples. In selected clinical samples 35/66 specimens were found underquantitated in the predecessor assay; all were quantitated correctly in the new assay. CONCLUSIONS: The dual-target approach for the HIV-1 TaqMan test v2.0 enables superior HIV-1 Group M subtype coverage including HIV-1 Group O detection. Correct quantitation of specimens underquantitated in the HIV-1 TaqMan test v1.0 test was demonstrated.
Resumo:
The aim of this study was to evaluate the forensic protocol recently developed by Qiagen for the QIAsymphony automated DNA extraction platform. Samples containing low amounts of DNA were specifically considered, since they represent the majority of samples processed in our laboratory. The analysis of simulated blood and saliva traces showed that the highest DNA yields were obtained with the maximal elution volume available for the forensic protocol, that is 200 ml. Resulting DNA extracts were too diluted for successful DNA profiling and required a concentration. This additional step is time consuming and potentially increases inversion and contamination risks. The 200 ml DNA extracts were concentrated to 25 ml, and the DNA recovery estimated with real-time PCR as well as with the percentage of SGM Plus alleles detected. Results using our manual protocol, based on the QIAamp DNA mini kit, and the automated protocol were comparable. Further tests will be conducted to determine more precisely DNA recovery, contamination risk and PCR inhibitors removal, once a definitive procedure, allowing the concentration of DNA extracts from low yield samples, will be available for the QIAsymphony.
Resumo:
Because of the increase in workplace automation and the diversification of industrial processes, workplaces have become more and more complex. The classical approaches used to address workplace hazard concerns, such as checklists or sequence models, are, therefore, of limited use in such complex systems. Moreover, because of the multifaceted nature of workplaces, the use of single-oriented methods, such as AEA (man oriented), FMEA (system oriented), or HAZOP (process oriented), is not satisfactory. The use of a dynamic modeling approach in order to allow multiple-oriented analyses may constitute an alternative to overcome this limitation. The qualitative modeling aspects of the MORM (man-machine occupational risk modeling) model are discussed in this article. The model, realized on an object-oriented Petri net tool (CO-OPN), has been developed to simulate and analyze industrial processes in an OH&S perspective. The industrial process is modeled as a set of interconnected subnets (state spaces), which describe its constitutive machines. Process-related factors are introduced, in an explicit way, through machine interconnections and flow properties. While man-machine interactions are modeled as triggering events for the state spaces of the machines, the CREAM cognitive behavior model is used in order to establish the relevant triggering events. In the CO-OPN formalism, the model is expressed as a set of interconnected CO-OPN objects defined over data types expressing the measure attached to the flow of entities transiting through the machines. Constraints on the measures assigned to these entities are used to determine the state changes in each machine. Interconnecting machines implies the composition of such flow and consequently the interconnection of the measure constraints. This is reflected by the construction of constraint enrichment hierarchies, which can be used for simulation and analysis optimization in a clear mathematical framework. The use of Petri nets to perform multiple-oriented analysis opens perspectives in the field of industrial risk management. It may significantly reduce the duration of the assessment process. But, most of all, it opens perspectives in the field of risk comparisons and integrated risk management. Moreover, because of the generic nature of the model and tool used, the same concepts and patterns may be used to model a wide range of systems and application fields.
Resumo:
The goal of this study was to compare the quantity and purity of DNA extracted from biological tracesusing the QIAsymphony robot with that of the manual QIAamp DNA mini kit currently in use in ourlaboratory. We found that the DNA yield of robot was 1.6-3.5 times lower than that of the manualprotocol. This resulted in a loss of 8% and 29% of the alleles correctly scored when analyzing 1/400 and 1/800 diluted saliva samples, respectively. Specific tests showed that the QIAsymphony was at least 2-16times more efficient at removing PCR inhibitors. The higher purity of the DNA may therefore partlycompensate for the lower DNA yield obtained. No case of cross-contamination was observed amongsamples. After purification with the robot, DNA extracts can be automatically transferred in 96-wellsplates, which is an ideal format for subsequent RT-qPCR quantification and DNA amplification. Lesshands-on time and reduced risk of operational errors represent additional advantages of the robotic platform.
Resumo:
The present research deals with an important public health threat, which is the pollution created by radon gas accumulation inside dwellings. The spatial modeling of indoor radon in Switzerland is particularly complex and challenging because of many influencing factors that should be taken into account. Indoor radon data analysis must be addressed from both a statistical and a spatial point of view. As a multivariate process, it was important at first to define the influence of each factor. In particular, it was important to define the influence of geology as being closely associated to indoor radon. This association was indeed observed for the Swiss data but not probed to be the sole determinant for the spatial modeling. The statistical analysis of data, both at univariate and multivariate level, was followed by an exploratory spatial analysis. Many tools proposed in the literature were tested and adapted, including fractality, declustering and moving windows methods. The use of Quan-tité Morisita Index (QMI) as a procedure to evaluate data clustering in function of the radon level was proposed. The existing methods of declustering were revised and applied in an attempt to approach the global histogram parameters. The exploratory phase comes along with the definition of multiple scales of interest for indoor radon mapping in Switzerland. The analysis was done with a top-to-down resolution approach, from regional to local lev¬els in order to find the appropriate scales for modeling. In this sense, data partition was optimized in order to cope with stationary conditions of geostatistical models. Common methods of spatial modeling such as Κ Nearest Neighbors (KNN), variography and General Regression Neural Networks (GRNN) were proposed as exploratory tools. In the following section, different spatial interpolation methods were applied for a par-ticular dataset. A bottom to top method complexity approach was adopted and the results were analyzed together in order to find common definitions of continuity and neighborhood parameters. Additionally, a data filter based on cross-validation was tested with the purpose of reducing noise at local scale (the CVMF). At the end of the chapter, a series of test for data consistency and methods robustness were performed. This lead to conclude about the importance of data splitting and the limitation of generalization methods for reproducing statistical distributions. The last section was dedicated to modeling methods with probabilistic interpretations. Data transformation and simulations thus allowed the use of multigaussian models and helped take the indoor radon pollution data uncertainty into consideration. The catego-rization transform was presented as a solution for extreme values modeling through clas-sification. Simulation scenarios were proposed, including an alternative proposal for the reproduction of the global histogram based on the sampling domain. The sequential Gaussian simulation (SGS) was presented as the method giving the most complete information, while classification performed in a more robust way. An error measure was defined in relation to the decision function for data classification hardening. Within the classification methods, probabilistic neural networks (PNN) show to be better adapted for modeling of high threshold categorization and for automation. Support vector machines (SVM) on the contrary performed well under balanced category conditions. In general, it was concluded that a particular prediction or estimation method is not better under all conditions of scale and neighborhood definitions. Simulations should be the basis, while other methods can provide complementary information to accomplish an efficient indoor radon decision making.
Resumo:
Needle fibre calcite is one of the most ubiquitous habits of calcite in vadose environments (caves deposits, soil pores, etc.). Its origin, either through inorganic, indirect or direct biological processes, has long been debated. In this study, investigations at 11 sites in Europe, Africa and Central America support arguments for its biogenic origin. The wide range of needle morphologies is the result of a gradual evolution of the simplest type, a rod. This rod is the elementary brick which, by aggregation and welding, builds more complex needles. The absence of cross-welded needles implies that they are welded in a mould, or under a longitudinal and unidirectional constraint, before being released inside the soil pores. The difference between the lengthening of the needles and the c axis can be explained by the existence of needles observed under a scanning electron microscope in organic sleeves, which can act as a mould during rod growth. Complex morphologies with epitaxial outgrowths on straight rods cannot have grown entirely inside organic microtubes; they must result from soil diagenesis after the release of straight rods in a soil-free medium. Whisker crystals are interpreted as the result of growth and coalescence of euhedral crystals on a rod. Rhomb chains are considered to be the consequence of successive epitaxial growth steps on a needle during variations in growth conditions. Isotopic signatures for needle fibre calcite vary from -16.63[per mille] to +1.10[per mille] and from -8.63[per mille] to -2.25[per mille] for Delta13C and Delta18O, respectively. The absence of high Delta18O values for needle fibre calcite precludes a purely physicochemical origin (evaporative) for this particular habit of calcite. As epitaxial growth cannot precipitate in the same conditions as initial needles, needle fibre calcite stable isotopic signatures should be used with caution as a proxy for palaeoenvironmental reconstructions. In addition, it is suggested that the term needle fibre calcite should be kept for the original biogenic form. The other habit should be referred to as epitaxial forms of needle fibre calcite.
Resumo:
In a multicenter study a new, fully automated Roche Diagnostics Elecsys HBsAg II screening assay with improved sensitivity to HBsAg mutant detection was compared to well-established HBsAg tests: AxSYM HBsAg V2 (Abbott), Architect HBsAg (Abbott), Advia Centaur HBsAg (Bayer) Enzygnost HBsAg 5.0 (Dade-Behring), and Vitros Eci HBsAg (Ortho). A total of 16 seroconversion panels, samples of 60 HBsAg native mutants, and 31 HBsAg recombinant mutants, dilution series of NIBSC and PEI standards, 156 HBV positive samples comprising genotypes A to G, 686 preselected HBsAg positive samples from different stages of infection, 3,593 samples from daily routine, and 6,360 unselected blood donations were tested to evaluate the analytical and clinical sensitivity, the detection of mutants, and the specificity of the new assay. Elecsys HBsAg II showed a statistically significant better sensitivity in seroconversion panels to the compared tests. Fifty-seven out of 60 native mutants and all recombinant mutants were found positive. Among 156 HBV samples with different genotypes and 696 preselected HBsAg positive samples Elecsys HBsAg II achieved a sensitivity of 100%. The lower detection limit for NIBSC standard was calculated to be 0.025 IU/ml and for the PEI standards ad and ay it was <0.001 and <0.005 U/ml, respectively. Within 2,724 daily routine specimens and 6.360 unselected blood donations Elecsys HBsAg II showed a specificity of 99.97 and 99.88%, respectively. In conclusion the new Elecsys HBsAg II shows a high sensitivity for the detection of all stages of HBV infection and HBsAg mutants paired together with a high specificity in blood donors, daily routine samples, and potentially interfering sera.
Resumo:
"MotionMaker (TM)" is a stationary programmable test and training system for the lower limbs developed at the 'Ecole Polytechnique Federale de Lausanne' with the 'Fondation Suisse pour les Cybertheses'.. The system is composed of two robotic orthoses comprising motors and sensors, and a control unit managing the trans-cutaneous electrical muscle stimulation with real-time regulation. The control of the Functional Electrical Stimulation (FES) induced muscle force necessary to mimic natural exercise is ensured by the control unit which receives a continuous input from the position and force sensors mounted on the robot. First results with control subjects showed the feasibility of creating movements by such closed-loop controlled FES induced muscle contractions. To make exercising with the MotionMaker (TM) safe for clinical trials with Spinal Cord Injured (SCI) volunteers, several original safety features have been introduced. The MotionMaker (TM) is able to identify and manage the occurrence of spasms. Fatigue can also be detected and overfatigue during exercise prevented.