89 resultados para Weak Localization
Resumo:
A radiolabeled monoclonal antibody (MAb) that has been shown to react specifically in vitro and ex vivo to human colorectal carcinoma and to inhibit growth of human carcinomas grafted in nude mice was administered to 52 colorectal carcinoma patients and 15 patients with other types of cancer. Of 63 colorectal carcinoma tumor sites studied, 34 showed significant accumulation of antibody by external photoscanning and tomoscintigraphy, whereas none of the 20 sites of other cancer types gave positive results. One-third of the patients received F(ab')2 fragments of the MAb, which gave a slightly higher percentage (61%) of positive results than did intact MAbs (51%). A few patients scheduled for tumor resection were given injections simultaneously of 131I-labeled MAb and 125I-labeled normal immunoglobulin G. Antibody concentration in resected tumors was 3.6 to 6.3 times higher than the average antibody concentration in adjacent normal tissues (1.5, 3.4, and 9.4 as compared with normal mucosa, serosa, and fat, respectively), and the specificity indices, calculated by differential radioactivity analysis, ranged from 2.1 to 5.1. The results show the potential value and limitations of this particular MAb for tumor detection by immunoscintigraphy.
Resumo:
At the latitude of the Thor-Odin dome (British Columbia) the Columbia River Detachment defines the eastern margin of the Shuswap metamorphic core complex and localizes in a 1 km thick muscovite-bearing quartzite mylonite. We present a combined Ar-40/Ar-39, (micro) structural, and oxygen isotope study of the deformation history in the detachment and evaluate the spatial and temporal relationships between microstructure formation and localization of strain. High-precision Ar-40/Ar-39 geochronology from different levels in the mylonite delineates a pattern of increasingly younger (49.0 to 47.9 Ma) deformation ages in deeper levels of the mylonitic footwall. The correlation of Ar-40/Ar-39 ages with decreasing deformation temperatures (similar to 550 degrees-400 degrees C) in the top 200 m of the mylonite indicates that deformation migrated downward from the contact with the hanging wall. Strain localization was diachronous in progressively deeper levels of the footwall and was likely controlled by fluid-assisted strain hardening due to advective heat removal and contemporaneous reaction weakening due to dissolution-reprecipitation of white mica. The observed constant high-stress microstructures across the entire detachment indicate that flow stress was buffered by the interplay of strain rate and temperature, where high strain rates at elevated temperature produced the same microstructure as lower strain rates under decreasing temperature conditions. The combined data suggest that the complex interplay among temporally nonuniform rates of footwall exhumation, heat advection, and embrittlement by meteoric fluids strongly determines the thermomechanical behavior of extensional detachments.
Resumo:
The subcellular localization of a calmodulin-stimulated calcium (Ca2+)-ATPase activity from maize roots (Zea mays L., cv LG 11) was studied. For this purpose, an efficient procedure was developed to prepare sealed plasma membrane vesicles allowing the measurement of proton and Ca2+ transport activities. Two-day-old root membranes were fractionated by sucrose and dextran density gradient centrifugation. Marker enzymes were used to study the distribution of the different membranes in the gradients and a filtration technique was developed to measure Ca-45(2+) transport in sealed vesicles. Most of the ATP-dependent Ca2+ transport activity was associated with the ER. However, a small part of this activity was associated with the tonoplast (corresponding to the activity of the H+/Ca2+ antiport) and the plasma membrane. When the Ca2+ transport was measured in the presence of exogenous calmodulin (1 muM), a 3-5-fold increase of uptake was measured. The calmodulin-stimulated activity was associated with the tonoplast vesicles only. This activity was insensitive to monensin, a proton ionophore, ruling out a direct effect of calmodulin on the H+/Ca2+ antiport. In conclusion, four different Ca2+ transporters are present in young maize root cells. A Ca2+/H+ antiport system is present on the tonoplast, whereas, the plasma membrane and the ER possess each a calmodulinin-sensitive Ca2+-ATPase. Finally, a calmodulin-stimulated Ca2+-ATPase is associated with the tonoplast.
Resumo:
The subcellular localization, distribution and the steady state level of calmodulin from maize roots (Zea mays L., cv. LG 11) were studied. To analyze the subcellular localization, 2-day old root membranes were fractionated by sucrose density gradient centrifugation and immunoblotting was done with an antibody raised against a vertebrate calmodulin (SWant) which recognized the plant calmodulin. Calmodulin was principally associated with high density fractions and particularly plasmalemma. For studying the distribution of calmodulin in various zones of Zea mays roots, a micro method of membrane preparation was developed. Most of the calmodulin was present in microsomes isolated from the root apex corresponding to the first 4 mm of a 15 +/- 2 mm root. An identical distribution was found by studying the steady state level of the protein by Northern blotting using a cDNA clone of Zea mays calmodulin.
Resumo:
Photons participate in many atomic and molecular interactions and processes. Recent biophysical research has discovered an ultraweak radiation in biological tissues. It is now recognized that plants, animal and human cells emit this very weak biophotonic emission which can be readily measured with a sensitive photomultiplier system. UVA laser induced biophotonic emission of cultured cells was used in this report with the intention to detect biophysical changes between young and adult fibroblasts as well as between fibroblasts and keratinocytes. With suspension densities ranging from 1-8 x 106 cells/ml, it was evident that an increase of the UVA-laser-light induced photon emission intensity could be observed in young as well as adult fibroblastic cells. By the use of this method to determine ultraweak light emission, photons in cell suspensions in low volumes (100 microl) could be detected, in contrast to previous procedures using quantities up to 10 ml. Moreover, the analysis has been further refined by turning off the photomultiplier system electronically during irradiation leading to the first measurements of induced light emission in the cells after less than 10 micros instead of more than 100 milliseconds. These significant changes lead to an improvement factor up to 106 in comparison to classical detection procedures. In addition, different skin cells as fibroblasts and keratinocytes stemming from the same donor were measured using this new highly sensitive method in order to find new biophysical insight of light pathways. This is important in view to develop new strategies in biophotonics especially for use in alternative therapies.
Resumo:
The initiation of chromosome replication is tightly regulated in bacteria to ensure that it takes place only once per cell cycle. In many proteobacteria, this process requires the ATP-bound form of the DnaA protein. The regulatory inactivation of DnaA (RIDA) facilitates the conversion of DnaA-ATP into replication-inactive DnaA-ADP, thereby preventing overinitiation. Homologues of the HdaA protein, together with the β-clamp of the DNA polymerase (DnaN), are required for this process. Here, we used fluorescence resonance energy transfer experiments to demonstrate that HdaA interacts with DnaN in live Caulobacter crescentus cells. We show that a QFKLPL motif in the N-terminal region of HdaA is required for this interaction and that this motif is also needed to recruit HdaA to the subcellular location occupied by the replisome during DNA replication. An HdaA mutant protein that cannot colocalize or interact with DnaN can also not support the essential function of HdaA. These results suggest that the recruitment of HdaA to the replisome is needed during RIDA in C. crescentus, probably as a means to sense whether chromosome replication has initiated before DnaA becomes inactivated. In addition, we show that a conserved R145 residue located in the AAA+ domain of HdaA is also needed for the function of HdaA, although it does not affect the interaction of HdaA with DnaN in vivo. The AAA+ domain of HdaA may therefore be required during RIDA after the initial recruitment of HdaA to the replisome by DnaN.
Resumo:
Inhibitory receptors mediate CD8 T-cell hyporesponsiveness against cancer and infectious diseases. PD-1 and CTLA-4 have been extensively studied, and blocking antibodies have already shown clinical benefit for cancer patients. Only little is known on extended co-expression of inhibitory receptors and their ligands. Here we analyzed the expression of eight inhibitory receptors by tumor-antigen specific CD8 T-cells. We found that the majority of effector T-cells simultaneously expressed four or more of the inhibitory receptors BTLA, TIM-3, LAG-3, KRLG-1, 2B4, CD160, PD-1 and CTLA-4. There were major differences depending on antigen-specificity, differentiation and anatomical localization of T-cells. On the other hand, naive T-cells were only single or double positive for BTLA and TIM-3. Extended co-expression is likely relevant for effector T-cells, as we found expression of multiple ligands in metastatic lesions of melanoma patients. Together, our data suggest that naive T-cells are primarily regulated by BTLA and TIM-3, whereas effector cells interact via larger numbers of inhibitory receptors. Blocking multiple inhibitory receptors simultaneously or sequentially may improve T-cell based therapies, but further studies are necessary to clarify the role of each receptor-ligand pair.
Resumo:
PPARs are a family of nuclear hormone receptors involved in various processes that could influence ovarian function. We investigated the cellular localization and expression of PPARs during follicular development in ovarian tissue collected from rats 0, 6, 12, 24, and 48 h post-PMSG. A second group of animals received human CG (hCG) 48 h post-PMSG. Their ovaries were removed 0, 4, 8, 12, and 24 h post-hCG to study the periovulatory period. mRNAs corresponding to the PPAR isotypes (alpha, delta, and gamma) were localized by in situ hybridization. Changes in the levels of mRNA for the PPARs were determined by ribonuclease protection assays. PPAR gamma mRNA was localized primarily to granulosa cells, and levels of expression did not change during follicular development. Four hours post-hCG, levels of mRNA for PPAR gamma decreased (P < 0.05) but not uniformly in all follicles. At 24 h post-hCG, levels of PPAR gamma mRNA were reduced 64%, but some follicles maintained high expression. In contrast, mRNAs for PPAR alpha and delta were located primarily in theca and stroma, and their levels did not change during the intervals studied. To investigate the physiologic significance of PPAR gamma in the ovary, granulosa cells from PMSG-primed rats were cultured for 48 h with prostaglandin J(2) (PGJ(2)) and ciglitazone, PPAR gamma activators. Both compounds increased progesterone and E2 secretion (P < 0.05). These data suggest that PPAR gamma is involved in follicular development, has a negative influence on the luteinization of granulosa cells, and/or regulates the periovulatory shift in steroid production. The more general and steady expression of PPARs alpha and delta indicate that they may play a role in basal ovarian function.
Resumo:
Here we present information on the assignment of 7 genes, ACADVL, ADORA3, ATP7A, MTMR4, MYH2, HBB, TSPAN-3, and 4 common shrew microsatellites to chromosomes of the common shrew (Sorex araneus) and on the current status of its cytogenetic map. Comparative mapping data were used for the analysis of evolutionary chromosomal rearrangements in the common shrew genome.
Resumo:
Glucose-dependent insulinotropic polypeptide (GIP) was initially described to be rapidly regulated by endocrine cells in response to nutrient ingestion, with stimulatory effects on insulin synthesis and release. Previously, we demonstrated a significant up-regulation of GIP mRNA in the rat subiculum after fornix injury. To gain more insight into the lesion-induced expression of GIP and its receptor (GIPR), expression profiles of the mRNAs were studied after rat sciatic nerve crush injury in 1) affected lumbar dorsal root ganglia (DRG), 2) spinal cord segments, and 3) proximal and distal nerve fragments by means of quantitative RT-PCR. Our results clearly identified lesion-induced as well as tissue type-specific mRNA regulation of GIP and its receptor. Furthermore, comprehensive immunohistochemical stainings not only confirmed and exceeded the previous observation of neuronal GIP expression but also revealed corresponding GIPR expression, implying putative modulatory functions of GIP/GIPR signaling in adult neurons. In complement, we also observed expression of GIP and its receptor in myelinating Schwann cells and oligodendrocytes. Polarized localization of GIPR in the abaxonal Schwann cell membranes, plasma membrane-associated GIPR expression of satellite cells, and ependymal GIPR expression strongly suggests complex cell type-specific functions of GIP and GIPR in the adult nervous system that are presumably mediated by autocrine and paracrine interactions, respectively. Notably, in vivo analyses with GIPR-deficient mice suggest a critical role of GIP/GIPR signal transduction in promoting spontaneous recovery after nerve crush, insofar as traumatic injury of GIPR-deficient mouse sciatic nerve revealed impaired axonal regeneration compared with wild-type mice.
Resumo:
The richness of plant species in Swiss alpine-nival summits increased during the climate warming of the 20th century. Thirty-seven summits (2797-3418 m a.s.l.) with both old (~1900-1920) and recent (~2000) plant inventories were used to test whether biological species traits can explain the observed rates of summit colonisation. Species were classified into two groups: good colonisers (colonising five or more summits) and weak colonisers (fewer than five new summits). We compared species traits related to growth, reproduction and dispersal between these two groups and between the good colonisers and a group of high alpine grassland species. The observed colonisation pattern was subsequently compared to a simulated random colonisation pattern. The distribution of new species on the summits was not random, and 16 species exhibited a colonisation rate higher than expected by chance. Taraxacum alpinum aggr. and Cardamine resedifolia were the best colonisers. Results showed that diaspore traits enhancing long-distance dispersal were more frequent among good colonisers than among weak colonisers. Good colonisers were mostly characterised by pappi or narrow wings on their diaspores. Both groups were able to grow on soils more bare and rocky than species from the alpine grasslands. All other biological traits that we considered were similar among the three alpine species groups. These results are important for improving predictive models of species distribution under climate change
Resumo:
The excessive accumulation of the adipose tissue is at the origin of the obesity. However its severity has no direct correlation with the comorbidities. These last ones are rather linked to the type of distribution of the fat than to its total quantity. The morphological and functional analysis of the adipose tissue reveals specific differences in its localization. The adipose tissue is thus a complex organ constituted by several cell types having various capacities of hypertrophy, hyperplasia and differentiation. While the first one is more predominant in the subcutaneous compartment, where the cell size is big, the others are more specific of the visceral adipocytes. Finally the severity of the obesity is linked to hypertrophy, while the comorbidities are associated with the capacity of proliferation and differentiation.
Resumo:
The interaction of Escherichia coli RNA polymerase with supercoiled DNA was visualized by cryo-electron microscopy of vitrified samples and by classical electron microscopy methods. We observed that when E. coli RNA polymerase binds to a promoter on supercoiled DNA, this promoter becomes located at an apical loop of the interwound DNA molecule. During transcription RNA polymerase shifts the apical loop along the DNA, always remaining at the top of the moving loop. This relationship between RNA polymerase and the supercoiled template precludes circling of the RNA polymerase around the DNA and prevents the growing RNA transcript from becoming entangled with the template DNA.
Resumo:
Using immunohistochemistry in combination with confocal laser scanning microscopy, we studied the ontogeny of neuropeptide Y-Y1 receptor (Y1-R) expression in the trigeminal system of the rat. The study was limited to the nerve fibers innervating the mystacial pad and the trigeminal ganglia. In the trigeminal ganglia, Y1-R-immunoreactive (IR) neurons were first observed at E16.5. At this same stage some nerve fibers in the trigeminal ganglia also exhibited Y1-R-like immunoreactivity (LI). Strongly Y1-R-IR nerve fibers innervating the follicles of the mystacial vibrissae were first observed at E18. After double labeling, the Y1-R-LI was found to be colocalized with the neuronal marker protein gene product 9.5. At P1 only weak labeling for the Y1-R was found around the vibrissae follicles, whereas the neurons in the trigeminal ganglia were intensely labeled. The same was true for the adult rat, but at this stage no Y1-R labeling at all was observed in nerve fibers around the vibrissal follicles. These results strongly support an axonal localization of the Y1-R at this developmental stage. The transient expression of the Y1-R during prenatal mystacial pad development suggests a role for the Y1-R in the functional development of the vibrissae.