25 resultados para Visual Odometry,Transformer,Deep learning


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of proximal olfactory cues on place learning and memory was tested in two different spatial tasks. Rats were trained to find a hole leading to their home cage or a single food source in an array of petri dishes. The two apparatuses differed both by the type of reinforcement (return to the home cage or food reward) and the local characteristics of the goal (masked holes or salient dishes). In both cases, the goal was in a fixed location relative to distant visual landmarks and could be marked by a local olfactory cue. Thus, the position of the goal was defined by two sets of redundant cues, each of which was sufficient to allow the discrimination of the goal location. These experiments were conducted with two strains of hooded rats (Long-Evans and PVG), which show different speeds of acquisition in place learning tasks. They revealed that the presence of an olfactory cue marking the goal facilitated learning of its location and that the facilitation persisted after the removal of the cue. Thus, the proximal olfactory cue appeared to potentiate learning and memory of the goal location relative to distant environmental cues. This facilitating effect was only detected when the expression of spatial memory was not already optimal, i.e., during the early phase of acquisition. It was not limited to a particular strain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To evaluate the long-term success rate and complications of nonpenetrating deep sclerectomy with collagen implant in open-angle glaucoma. PATIENTS AND METHODS: Clinical, prospective, monocentric, nonrandomized, unmasked study on 105 patients with medically uncontrolled glaucoma. A standard procedure deep sclerectomy with collagen implant was performed. Complete examinations were performed before surgery and postoperatively at 1 and 7 days; 1, 2, 3, 6, 9, and 12 months and then every 6 months during the 10 following years. RESULTS: The mean follow-up was 101.5+/-43.1 (3 to 144) months [mean+/-SD, (range)]. The preoperative intraocular pressure (IOP) was 26.8+/-7.7 (14 to 52) mm Hg and the best-corrected visual acuity 0.71+/-0.33 (0.02 to 1.5). Ten years after surgery IOP was 12.2+/-4.7 (6 to 20) mm Hg and best-corrected visual acuity 0.63+/-0.34 (0.01 to 1.2) (number of remaining patients=52). The mean number of medications per patient went from 2.3+/-0.7 (1 to 4) down to 1.3+/-1.1 (0 to 3). An IOP <or=21 mm Hg without medication was achieved in 47.7% patients and in 89% with or without treatment. One major complication was reported. Goniopuncture was performed in 61 eyes (59.8%), 5-fluorouracil treatment given to 25 patients postoperatively and included needling (n=5). CONCLUSIONS: On the basis of a 10-year follow-up deep sclerectomy with collagen implant demonstrated its efficacy in controlling IOP with few postoperative complications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study assesses gender differences in spatial and non-spatial relational learning and memory in adult humans behaving freely in a real-world, open-field environment. In Experiment 1, we tested the use of proximal landmarks as conditional cues allowing subjects to predict the location of rewards hidden in one of two sets of three distinct locations. Subjects were tested in two different conditions: (1) when local visual cues marked the potentially-rewarded locations, and (2) when no local visual cues marked the potentially-rewarded locations. We found that only 17 of 20 adults (8 males, 9 females) used the proximal landmarks to predict the locations of the rewards. Although females exhibited higher exploratory behavior at the beginning of testing, males and females discriminated the potentially-rewarded locations similarly when local visual cues were present. Interestingly, when the spatial and local information conflicted in predicting the reward locations, males considered both spatial and local information, whereas females ignored the spatial information. However, in the absence of local visual cues females discriminated the potentially-rewarded locations as well as males. In Experiment 2, subjects (9 males, 9 females) were tested with three asymmetrically-arranged rewarded locations, which were marked by local cues on alternate trials. Again, females discriminated the rewarded locations as well as males in the presence or absence of local cues. In sum, although particular aspects of task performance might differ between genders, we found no evidence that women have poorer allocentric spatial relational learning and memory abilities than men in a real-world, open-field environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dans le domaine de la perception, l'apprentissage est contraint par la présence d'une architecture fonctionnelle constituée d'aires corticales distribuées et très spécialisées. Dans le domaine des troubles visuels d'origine cérébrale, l'apprentissage d'un patient hémi-anopsique ou agnosique sera limité par ses capacités perceptives résiduelles, mais un déficit de reconnaissance visuelle de nature apparemment perceptive, peut également être associé à une altération des représentations en mémoire à long terme. Des réseaux neuronaux distincts pour la reconnaissance - cortex temporal - et pour la localisation des sons - cortex pariétal - ont été décrits chez l'homme. L'étude de patients cérébro-lésés confirme le rôle des indices spatiaux dans un traitement auditif explicite du « where » et dans la discrimination implicite du « what ». Cette organisation, similaire à ce qui a été décrit dans la modalité visuelle, faciliterait les apprentissages perceptifs. Plus généralement, l'apprentissage implicite fonde une grande partie de nos connaissances sur le monde en nous rendant sensible, à notre insu, aux règles et régularités de notre environnement. Il serait impliqué dans le développement cognitif, la formation des réactions émotionnelles ou encore l'apprentissage par le jeune enfant de sa langue maternelle. Le caractère inconscient de cet apprentissage est confirmé par l'étude des temps de réaction sériels de patients amnésiques dans l'acquisition d'une grammaire artificielle. Son évaluation pourrait être déterminante dans la prise en charge ré-adaptative. [In the field of perception, learning is formed by a distributed functional architecture of very specialized cortical areas. For example, capacities of learning in patients with visual deficits - hemianopia or visual agnosia - from cerebral lesions are limited by perceptual abilities. Moreover a visual deficit in link with abnormal perception may be associated with an alteration of representations in long term (semantic) memory. Furthermore, perception and memory traces rely on parallel processing. This has been recently demonstrated for human audition. Activation studies in normal subjects and psychophysical investigations in patients with focal hemispheric lesions have shown that auditory information relevant to sound recognition and that relevant to sound localisation are processed in parallel, anatomically distinct cortical networks, often referred to as the "What" and "Where" processing streams. Parallel processing may appear counterintuitive from the point of view of a unified perception of the auditory world, but there are advantages, such as rapidity of processing within a single stream, its adaptability in perceptual learning or facility of multisensory interactions. More generally, implicit learning mechanisms are responsible for the non-conscious acquisition of a great part of our knowledge about the world, using our sensitivity to the rules and regularities structuring our environment. Implicit learning is involved in cognitive development, in the generation of emotional processing and in the acquisition of natural language. Preserved implicit learning abilities have been shown in amnesic patients with paradigms like serial reaction time and artificial grammar learning tasks, confirming that implicit learning mechanisms are not sustained by the cognitive processes and the brain structures that are damaged in amnesia. In a clinical perspective, the assessment of implicit learning abilities in amnesic patients could be critical for building adapted neuropsychological rehabilitation programs.]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rats, like other crepuscular animals, have excellent auditory capacities and they discriminate well between different sounds [Heffner HE, Heffner RS, Hearing in two cricetid rodents: wood rats (Neotoma floridana) and grasshopper mouse (Onychomys leucogaster). J Comp Psychol 1985;99(3):275-88]. However, most experimental literature concerning spatial orientation almost exclusively emphasizes the use of visual landmarks [Cressant A, Muller RU, Poucet B. Failure of centrally placed objects to control the firing fields of hippocampal place cells. J Neurosci 1997;17(7):2531-42; and Goodridge JP, Taube JS. Preferential use of the landmark navigational system by head direction cells in rats. Behav Neurosci 1995;109(1):49-61]. To address the important issue of whether rats are able to achieve a place navigation task relative to auditory beacons, we designed a place learning task in the water maze. We controlled cue availability by conducting the experiment in total darkness. Three auditory cues did not allow place navigation whereas three visual cues in the same positions did support place navigation. One auditory beacon directly associated with the goal location did not support taxon navigation (a beacon strategy allowing the animal to find the goal just by swimming toward the cue). Replacing the auditory beacons by one single visual beacon did support taxon navigation. A multimodal configuration of two auditory cues and one visual cue allowed correct place navigation. The deletion of the two auditory or of the one visual cue did disrupt the spatial performance. Thus rats can combine information from different sensory modalities to achieve a place navigation task. In particular, auditory cues support place navigation when associated with a visual one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two spatial tasks were designed to test specific properties of spatial representation in rats. In the first task, rats were trained to locate an escape hole at a fixed position in a visually homogeneous arena. This arena was connected with a periphery where a full view of the room environment existed. Therefore, rats were dependent on their memory trace of the previous position in the periphery to discriminate a position within the central region. Under these experimental conditions, the test animals showed a significant discrimination of the training position without a specific local view. In the second task, rats were trained in a radial maze consisting of tunnels that were transparent at their distal ends only. Because the central part of the maze was non-transparent, rats had to plan and execute appropriate trajectories without specific visual feedback from the environment. This situation was intended to encourage the reliance on prospective memory of the non-visited arms in selecting the following move. Our results show that acquisition performance was only slightly decreased compared to that shown in a completely transparent maze and considerably higher than in a translucent maze or in darkness. These two series of experiments indicate (1) that rats can learn about the relative position of different places with no common visual panorama, and (2) that they are able to plan and execute a sequence of visits to several places without direct visual feed-back about their relative position.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To study prospectively the success rate and complications of deep sclerectomy with collagen implant (DSCI). SETTING: Glaucoma Unit, Department of Ophthalmology, Hôpital Ophtalmique Jules Gonin, University of Lausanne, Lausanne, Switzerland. METHODS: This nonrandomized prospective trial comprised 105 eyes of 105 patients with medically uncontrolled primary and secondary open-angle glaucoma. Visual acuity, intraocular pressure (IOP), and slitlamp examinations were performed before surgery and after surgery at 1 and 7 days, and 1, 3, 6, 9, 12, 18, 24, 30, 36, 48, 54, 60, 66, 72, 78, 84, 90, and 96 months. Visual field examinations were repeated every 6 months. RESULTS: Mean follow-up period was 64 months +/- 26.6 (SD). Mean preoperative IOP was 26.8 +/- 7.7 mm Hg, and mean postoperative IOP was 5.2 +/- 3.35 mm Hg at day 1 and 12 +/- 3 mm Hg at month 78. At 96 months, the qualified success rate (ie, patients who achieved IOP <21 mm Hg with and without medication) was 91%, and the complete success rate (ie, IOP <21 mm Hg without medication) was 57%. At 96 months, 34% of patients had an IOP <21 mm Hg with medication. Fifty-one patients (49%) achieved an IOP < or =15 mm Hg without medication. Neodymium:YAG goniopuncture was performed in 54 patients (51%); mean time of goniopuncture performance was 21 months, and mean IOP before goniopuncture was 20 mm Hg, dropping to 11 mm Hg after goniopuncture. No shallow or flat anterior chamber, endophthalmitis, or surgery-induced cataract was observed. However, 26 patients (25%) showed a progression of preexisting senile cataract (mean time 26 months; range 18 to 37 months). Injections of 5-fluorouracil were administered to 25 patients (23%) who underwent DSCI to salvage encysted blebs. Mean number of medications per patient was reduced from 2.3 +/- 0.7 to 0.5 +/- 0.7 (signed rank P<.0001). CONCLUSION: Deep sclerectomy with collagen implant appears to provide stable and reasonable control of IOP at long-term follow-up with few immediate postoperative complications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-trial encounters with multisensory stimuli affect both memory performance and early-latency brain responses to visual stimuli. Whether and how auditory cortices support memory processes based on single-trial multisensory learning is unknown and may differ qualitatively and quantitatively from comparable processes within visual cortices due to purported differences in memory capacities across the senses. We recorded event-related potentials (ERPs) as healthy adults (n = 18) performed a continuous recognition task in the auditory modality, discriminating initial (new) from repeated (old) sounds of environmental objects. Initial presentations were either unisensory or multisensory; the latter entailed synchronous presentation of a semantically congruent or a meaningless image. Repeated presentations were exclusively auditory, thus differing only according to the context in which the sound was initially encountered. Discrimination abilities (indexed by d') were increased for repeated sounds that were initially encountered with a semantically congruent image versus sounds initially encountered with either a meaningless or no image. Analyses of ERPs within an electrical neuroimaging framework revealed that early stages of auditory processing of repeated sounds were affected by prior single-trial multisensory contexts. These effects followed from significantly reduced activity within a distributed network, including the right superior temporal cortex, suggesting an inverse relationship between brain activity and behavioural outcome on this task. The present findings demonstrate how auditory cortices contribute to long-term effects of multisensory experiences on auditory object discrimination. We propose a new framework for the efficacy of multisensory processes to impact both current multisensory stimulus processing and unisensory discrimination abilities later in time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ignoring irrelevant visual information aids efficient interaction with task environments. We studied how people, after practice, start to ignore the irrelevant aspects of stimuli. For this we focused on how information reduction transfers to rarely practised and novel stimuli. In Experiment 1, we compared competing mathematical models on how people cease to fixate on irrelevant parts of stimuli. Information reduction occurred at the same rate for frequent, infrequent, and novel stimuli. Once acquired with some stimuli, it was applied to all. In Experiment 2, simplification of task processing also occurred in a once-for-all manner when spatial regularities were ruled out so that people could not rely on learning which screen position is irrelevant. Apparently, changes in eye movements were an effect of a once-for-all strategy change rather than a cause of it. Overall, the results suggest that participants incidentally acquired knowledge about regularities in the task material and then decided to voluntarily apply it for efficient task processing. Such decisions should be incorporated into accounts of information reduction and other theories of strategy change in skill acquisition.