79 resultados para Vision algorithms for grasping
Resumo:
To make a comprehensive evaluation of organ-specific out-of-field doses using Monte Carlo (MC) simulations for different breast cancer irradiation techniques and to compare results with a commercial treatment planning system (TPS). Three breast radiotherapy techniques using 6MV tangential photon beams were compared: (a) 2DRT (open rectangular fields), (b) 3DCRT (conformal wedged fields), and (c) hybrid IMRT (open conformal+modulated fields). Over 35 organs were contoured in a whole-body CT scan and organ-specific dose distributions were determined with MC and the TPS. Large differences in out-of-field doses were observed between MC and TPS calculations, even for organs close to the target volume such as the heart, the lungs and the contralateral breast (up to 70% difference). MC simulations showed that a large fraction of the out-of-field dose comes from the out-of-field head scatter fluence (>40%) which is not adequately modeled by the TPS. Based on MC simulations, the 3DCRT technique using external wedges yielded significantly higher doses (up to a factor 4-5 in the pelvis) than the 2DRT and the hybrid IMRT techniques which yielded similar out-of-field doses. In sharp contrast to popular belief, the IMRT technique investigated here does not increase the out-of-field dose compared to conventional techniques and may offer the most optimal plan. The 3DCRT technique with external wedges yields the largest out-of-field doses. For accurate out-of-field dose assessment, a commercial TPS should not be used, even for organs near the target volume (contralateral breast, lungs, heart).
Resumo:
Purpose: Elevated IOP is commonly associated with iris and ciliary body melanoma. Traditional management requires the majority of eyes to undergo enucleation. The authors describe the first series of Baerveldt aqueous shunts in eyes with uveal melanoma, treated by total anterior segment irradiation.Methods: 25 consecutive patients with unilateral iris melanoma were prospectively recruited after obtaining informed consent. All patients underwent anterior segment proton beam irradiation, corneal limbal autografts and Baerveldt tube implantation at Jules Gonin Eye Hospital, Lausanne. Postoperative examinations were performed on day 1, weeks 1,3,6,9 and months 3,6,12 and annually thereafter. Success was defined as: IOP </=18mmHg (definition A); IOP </= 21mmHg and 20% reduction in IOP (definition B). All complications were recorded.Results: Mean age was 53; mean follow up, 10.3 months; mean interval to treatment following irradiation, 2.4 years; mean pre-op IOP was 29.9 mmHg; mean post-op IOP 14.1 mmHg; mean pre-op medications 3.0; post-op medications 1.3. Success rates were, definition A: 95%; definition B: 90%. Only11% had minor complications and there were no sight-threatening complications. Aggressive ocular hypertension was observed in the several eyes prior to shunt implantation. Two eyes were enucleated for non-glaucoma related sequelae.Conclusions: Baerveldt aqueous shunts are safe and efficacious following total anterior segment irradiation for uveal melanoma. The novel interdisciplinary approach improved ocular retention rates, offering a promising alternative to current management algorithms.
Resumo:
Primary care physicians have to assess visual functions essential for driving when determining medical fitness to drive. However, it can be difficult to apply the legal requirements that are described in annex 1 of the ordinance regulating the admission to road traffic of 1976 (OAC) due to lack of unambiguousness. This article discusses those visual functions that have to be assessed namely visual acuity, the visual field and the detection of diplopia and it presents the appropriate methods for the primary care setting. Another objective is to discuss the relevance of road safety requirements on vision and to present the new Swiss requirements proposed for the future in comparison to some international recommendations.
Resumo:
In the first part of this research, three stages were stated for a program to increase the information extracted from ink evidence and maximise its usefulness to the criminal and civil justice system. These stages are (a) develop a standard methodology for analysing ink samples by high-performance thin layer chromatography (HPTLC) in reproducible way, when ink samples are analysed at different time, locations and by different examiners; (b) compare automatically and objectively ink samples; and (c) define and evaluate theoretical framework for the use of ink evidence in forensic context. This report focuses on the second of the three stages. Using the calibration and acquisition process described in the previous report, mathematical algorithms are proposed to automatically and objectively compare ink samples. The performances of these algorithms are systematically studied for various chemical and forensic conditions using standard performance tests commonly used in biometrics studies. The results show that different algorithms are best suited for different tasks. Finally, this report demonstrates how modern analytical and computer technology can be used in the field of ink examination and how tools developed and successfully applied in other fields of forensic science can help maximising its impact within the field of questioned documents.
Resumo:
We report a 14-year-old boy who presented with vision loss secondary to peripapillary neovascular membrane (PPNVM) as the initial and only symptom of papilledema secondary to idiopathic intracranial hypertension. After one lumbar puncture, visual acuity progressively recovered during the course of 1 week and further improved with the administration of oral acetazolamide. One year after the onset of vision loss, the patient's visual acuity had recovered to baseline measurements. The previously active PPNVM had involuted into a residual peripapillary fibrotic scar. To our knowledge, this is the first report of PPNVM complicating idiopathic intracranial hypertension in a child.
Resumo:
BACKGROUND: Tests for recent infections (TRIs) are important for HIV surveillance. We have shown that a patient's antibody pattern in a confirmatory line immunoassay (Inno-Lia) also yields information on time since infection. We have published algorithms which, with a certain sensitivity and specificity, distinguish between incident (< = 12 months) and older infection. In order to use these algorithms like other TRIs, i.e., based on their windows, we now determined their window periods. METHODS: We classified Inno-Lia results of 527 treatment-naïve patients with HIV-1 infection < = 12 months according to incidence by 25 algorithms. The time after which all infections were ruled older, i.e. the algorithm's window, was determined by linear regression of the proportion ruled incident in dependence of time since infection. Window-based incident infection rates (IIR) were determined utilizing the relationship 'Prevalence = Incidence x Duration' in four annual cohorts of HIV-1 notifications. Results were compared to performance-based IIR also derived from Inno-Lia results, but utilizing the relationship 'incident = true incident + false incident' and also to the IIR derived from the BED incidence assay. RESULTS: Window periods varied between 45.8 and 130.1 days and correlated well with the algorithms' diagnostic sensitivity (R(2) = 0.962; P<0.0001). Among the 25 algorithms, the mean window-based IIR among the 748 notifications of 2005/06 was 0.457 compared to 0.453 obtained for performance-based IIR with a model not correcting for selection bias. Evaluation of BED results using a window of 153 days yielded an IIR of 0.669. Window-based IIR and performance-based IIR increased by 22.4% and respectively 30.6% in 2008, while 2009 and 2010 showed a return to baseline for both methods. CONCLUSIONS: IIR estimations by window- and performance-based evaluations of Inno-Lia algorithm results were similar and can be used together to assess IIR changes between annual HIV notification cohorts.
Resumo:
Recently, kernel-based Machine Learning methods have gained great popularity in many data analysis and data mining fields: pattern recognition, biocomputing, speech and vision, engineering, remote sensing etc. The paper describes the use of kernel methods to approach the processing of large datasets from environmental monitoring networks. Several typical problems of the environmental sciences and their solutions provided by kernel-based methods are considered: classification of categorical data (soil type classification), mapping of environmental and pollution continuous information (pollution of soil by radionuclides), mapping with auxiliary information (climatic data from Aral Sea region). The promising developments, such as automatic emergency hot spot detection and monitoring network optimization are discussed as well.