60 resultados para Very high frequency


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to determine the prevalence of low fat-free mass index (FFMI) and high and very high body fat mass index (BFMI) after lung transplantation (LTR). A total of 37 LTR patients were assessed prior to and at 1 month, 1 year and 2 years for FFM and compared to 37 matched volunteers (VOL). FFM was calculated by the Geneva equation and normalized for height (kg/m(2)). Subjects were classified as FFMI "low", <or=17.4 in men and <or=15.0 in women; BFMI "high", 5.2-8.1 in men and 8.3-11.7 in women; or "very high" >8.2 kg/m(2) in men and >11.8 kg/m(2) in women. In 23 M/14 F, body mass index (BMI) was 22.3+/-4.4 and 20.1+/-4.9 kg/m(2), respectively. The prevalence of low FFMI was 80% at 1 month and 33% at 2 years after LTR. Prevalence of very high BFMI increased and was higher in patients than VOL after LTR. The prevalence of low FFMI was high prior to and remained important 2 years after LTR, whereas BFMI was lower prior to and higher 2 years after LTR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High frequency oscillatory ventilation (HFOV) is becoming an increasingly popular intervention in the neonatal intensive care unit. This article will attempt to explain the principles of HFOV. It is inherently more difficult to become skilled in this technique than in other forms of mechanical ventilation, so caution is warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in remote sensing technologies have facilitated the generation of very high resolution (VHR) environmental data. Exploratory studies suggested that, if used in species distribution models (SDMs), these data should enable modelling species' micro-habitats and allow improving predictions for fine-scale biodiversity management. In the present study, we tested the influence, in SDMs, of predictors derived from a VHR digital elevation model (DEM) by comparing the predictive power of models for 239 plant species and their assemblages fitted at six different resolutions in the Swiss Alps. We also tested whether changes of the model quality for a species is related to its functional and ecological characteristics. Refining the resolution only contributed to slight improvement of the models for more than half of the examined species, with the best results obtained at 5 m, but no significant improvement was observed, on average, across all species. Contrary to our expectations, we could not consistently correlate the changes in model performance with species characteristics such as vegetation height. Temperature, the most important variable in the SDMs across the different resolutions, did not contribute any substantial improvement. Our results suggest that improving resolution of topographic data only is not sufficient to improve SDM predictions - and therefore local management - compared to previously used resolutions (here 25 and 100 m). More effort should be dedicated now to conduct finer-scale in-situ environmental measurements (e.g. for temperature, moisture, snow) to obtain improved environmental measurements for fine-scale species mapping and management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In contrast with the low frequency of most single epitope reactive T cells in the preimmune repertoire, up to 1 of 1,000 naive CD8(+) T cells from A2(+) individuals specifically bind fluorescent A2/peptide multimers incorporating the A27L analogue of the immunodominant 26-35 peptide from the melanocyte differentiation and melanoma associated antigen Melan-A. This represents the only naive antigen-specific T cell repertoire accessible to direct analysis in humans up to date. To get insight into the molecular basis for the selection and maintenance of such an abundant repertoire, we analyzed the functional diversity of T cells composing this repertoire ex vivo at the clonal level. Surprisingly, we found a significant proportion of multimer(+) clonotypes that failed to recognize both Melan-A analogue and parental peptides in a functional assay but efficiently recognized peptides from proteins of self- or pathogen origin selected for their potential functional cross-reactivity with Melan-A. Consistent with these data, multimers incorporating some of the most frequently recognized peptides specifically stained a proportion of naive CD8(+) T cells similar to that observed with Melan-A multimers. Altogether these results indicate that the high frequency of Melan-A multimer(+) T cells can be explained by the existence of largely cross-reactive subsets of naive CD8(+) T cells displaying multiple specificities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the relevance of morphological operators for the classification of land use in urban scenes using submetric panchromatic imagery. A support vector machine is used for the classification. Six types of filters have been employed: opening and closing, opening and closing by reconstruction, and opening and closing top hat. The type and scale of the filters are discussed, and a feature selection algorithm called recursive feature elimination is applied to decrease the dimensionality of the input data. The analysis performed on two QuickBird panchromatic images showed that simple opening and closing operators are the most relevant for classification at such a high spatial resolution. Moreover, mixed sets combining simple and reconstruction filters provided the best performance. Tests performed on both images, having areas characterized by different architectural styles, yielded similar results for both feature selection and classification accuracy, suggesting the generalization of the feature sets highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, mixed spectral-structural kernel machines are proposed for the classification of very-high resolution images. The simultaneous use of multispectral and structural features (computed using morphological filters) allows a significant increase in classification accuracy of remote sensing images. Subsequently, weighted summation kernel support vector machines are proposed and applied in order to take into account the multiscale nature of the scene considered. Such classifiers use the Mercer property of kernel matrices to compute a new kernel matrix accounting simultaneously for two scale parameters. Tests on a Zurich QuickBird image show the relevance of the proposed method : using the mixed spectral-structural features, the classification accuracy increases of about 5%, achieving a Kappa index of 0.97. The multikernel approach proposed provide an overall accuracy of 98.90% with related Kappa index of 0.985.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: In contrast to conventional (CONV) neuromuscular electrical stimulation (NMES), the use of "wide-pulse, high-frequencies" (WPHF) can generate higher forces than expected by the direct activation of motor axons alone. We aimed at investigating the occurrence, magnitude, variability and underlying neuromuscular mechanisms of these "Extra Forces" (EF). METHODS: Electrically-evoked isometric plantar flexion force was recorded in 42 healthy subjects. Additionally, twitch potentiation, H-reflex and M-wave responses were assessed in 13 participants. CONV (25Hz, 0.05ms) and WPHF (100Hz, 1ms) NMES consisted of five stimulation trains (20s on-90s off). RESULTS: K-means clustering analysis disclosed a responder rate of almost 60%. Within this group of responders, force significantly increased from 4% to 16% of the maximal voluntary contraction force and H-reflexes were depressed after WPHF NMES. In contrast, non-responders showed neither EF nor H-reflex depression. Twitch potentiation and resting EMG data were similar between groups. Interestingly, a large inter- and intrasubject variability of EF was observed. CONCLUSION: The responder percentage was overestimated in previous studies. SIGNIFICANCE: This study proposes a novel methodological framework for unraveling the neurophysiological mechanisms involved in EF and provides further evidence for a central contribution to EF in responders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Congenital hypogonadotropic hypogonadism (CHH) and split hand/foot malformation (SHFM) are two rare genetic conditions. Here we report a clinical entity comprising the two. METHODS: We identified patients with CHH and SHFM through international collaboration. Probands and available family members underwent phenotyping and screening for FGFR1 mutations. The impact of identified mutations was assessed by sequence- and structure-based predictions and/or functional assays. RESULTS: We identified eight probands with CHH with (n = 3; Kallmann syndrome) or without anosmia (n = 5) and SHFM, seven of whom (88%) harbor FGFR1 mutations. Of these seven, one individual is homozygous for p.V429E and six individuals are heterozygous for p.G348R, p.G485R, p.Q594*, p.E670A, p.V688L, or p.L712P. All mutations were predicted by in silico analysis to cause loss of function. Probands with FGFR1 mutations have severe gonadotropin-releasing hormone deficiency (absent puberty and/or cryptorchidism and/or micropenis). SHFM in both hands and feet was observed only in the patient with the homozygous p.V429E mutation; V429 maps to the fibroblast growth factor receptor substrate 2α binding domain of FGFR1, and functional studies of the p.V429E mutation demonstrated that it decreased recruitment and phosphorylation of fibroblast growth factor receptor substrate 2α to FGFR1, thereby resulting in reduced mitogen-activated protein kinase signaling. CONCLUSION: FGFR1 should be prioritized for genetic testing in patients with CHH and SHFM because the likelihood of a mutation increases from 10% in the general CHH population to 88% in these patients.Genet Med 17 8, 651-659.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, Species Distribution Models (SDMs) are a widely used tool. Using different statistical approaches these models reconstruct the realized niche of a species using presence data and a set of variables, often topoclimatic. There utilization range is quite large from understanding single species requirements, to the creation of nature reserve based on species hotspots, or modeling of climate change impact, etc... Most of the time these models are using variables at a resolution of 50km x 50km or 1 km x 1 km. However in some cases these models are used with resolutions below the kilometer scale and thus called high resolution models (100 m x 100 m or 25 m x 25 m). Quite recently a new kind of data has emerged enabling precision up to lm x lm and thus allowing very high resolution modeling. However these new variables are very costly and need an important amount of time to be processed. This is especially the case when these variables are used in complex calculation like models projections over large areas. Moreover the importance of very high resolution data in SDMs has not been assessed yet and is not well understood. Some basic knowledge on what drive species presence-absences is still missing. Indeed, it is not clear whether in mountain areas like the Alps coarse topoclimatic gradients are driving species distributions or if fine scale temperature or topography are more important or if their importance can be neglected when balance to competition or stochasticity. In this thesis I investigated the importance of very high resolution data (2-5m) in species distribution models using either very high resolution topographic, climatic or edaphic variables over a 2000m elevation gradient in the Western Swiss Alps. I also investigated more local responses of these variables for a subset of species living in this area at two precise elvation belts. During this thesis I showed that high resolution data necessitates very good datasets (species and variables for the models) to produce satisfactory results. Indeed, in mountain areas, temperature is the most important factor driving species distribution and needs to be modeled at very fine resolution instead of being interpolated over large surface to produce satisfactory results. Despite the instinctive idea that topographic should be very important at high resolution, results are mitigated. However looking at the importance of variables over a large gradient buffers the importance of the variables. Indeed topographic factors have been shown to be highly important at the subalpine level but their importance decrease at lower elevations. Wether at the mountane level edaphic and land use factors are more important high resolution topographic data is more imporatant at the subalpine level. Finally the biggest improvement in the models happens when edaphic variables are added. Indeed, adding soil variables is of high importance and variables like pH are overpassing the usual topographic variables in SDMs in term of importance in the models. To conclude high resolution is very important in modeling but necessitate very good datasets. Only increasing the resolution of the usual topoclimatic predictors is not sufficient and the use of edaphic predictors has been highlighted as fundamental to produce significantly better models. This is of primary importance, especially if these models are used to reconstruct communities or as basis for biodiversity assessments. -- Ces dernières années, l'utilisation des modèles de distribution d'espèces (SDMs) a continuellement augmenté. Ces modèles utilisent différents outils statistiques afin de reconstruire la niche réalisée d'une espèce à l'aide de variables, notamment climatiques ou topographiques, et de données de présence récoltées sur le terrain. Leur utilisation couvre de nombreux domaines allant de l'étude de l'écologie d'une espèce à la reconstruction de communautés ou à l'impact du réchauffement climatique. La plupart du temps, ces modèles utilisent des occur-rences issues des bases de données mondiales à une résolution plutôt large (1 km ou même 50 km). Certaines bases de données permettent cependant de travailler à haute résolution, par conséquent de descendre en dessous de l'échelle du kilomètre et de travailler avec des résolutions de 100 m x 100 m ou de 25 m x 25 m. Récemment, une nouvelle génération de données à très haute résolution est apparue et permet de travailler à l'échelle du mètre. Les variables qui peuvent être générées sur la base de ces nouvelles données sont cependant très coûteuses et nécessitent un temps conséquent quant à leur traitement. En effet, tout calcul statistique complexe, comme des projections de distribution d'espèces sur de larges surfaces, demande des calculateurs puissants et beaucoup de temps. De plus, les facteurs régissant la distribution des espèces à fine échelle sont encore mal connus et l'importance de variables à haute résolution comme la microtopographie ou la température dans les modèles n'est pas certaine. D'autres facteurs comme la compétition ou la stochasticité naturelle pourraient avoir une influence toute aussi forte. C'est dans ce contexte que se situe mon travail de thèse. J'ai cherché à comprendre l'importance de la haute résolution dans les modèles de distribution d'espèces, que ce soit pour la température, la microtopographie ou les variables édaphiques le long d'un important gradient d'altitude dans les Préalpes vaudoises. J'ai également cherché à comprendre l'impact local de certaines variables potentiellement négligées en raison d'effets confondants le long du gradient altitudinal. Durant cette thèse, j'ai pu monter que les variables à haute résolution, qu'elles soient liées à la température ou à la microtopographie, ne permettent qu'une amélioration substantielle des modèles. Afin de distinguer une amélioration conséquente, il est nécessaire de travailler avec des jeux de données plus importants, tant au niveau des espèces que des variables utilisées. Par exemple, les couches climatiques habituellement interpolées doivent être remplacées par des couches de température modélisées à haute résolution sur la base de données de terrain. Le fait de travailler le long d'un gradient de température de 2000m rend naturellement la température très importante au niveau des modèles. L'importance de la microtopographie est négligeable par rapport à la topographie à une résolution de 25m. Cependant, lorsque l'on regarde à une échelle plus locale, la haute résolution est une variable extrêmement importante dans le milieu subalpin. À l'étage montagnard par contre, les variables liées aux sols et à l'utilisation du sol sont très importantes. Finalement, les modèles de distribution d'espèces ont été particulièrement améliorés par l'addition de variables édaphiques, principalement le pH, dont l'importance supplante ou égale les variables topographique lors de leur ajout aux modèles de distribution d'espèces habituels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Digital elevation models (DEMs) are often used in landscape ecology to retrieve elevation or first derivative terrain attributes such as slope or aspect in the context of species distribution modelling. However, DEM-derived variables are scale-dependent and, given the increasing availability of very high-resolution (VHR) DEMs, their ecological relevancemust be assessed for different spatial resolutions. 2. In a study area located in the Swiss Western Alps, we computed VHR DEMs-derived variables related to morphometry, hydrology and solar radiation. Based on an original spatial resolution of 0.5 m, we generated DEM-derived variables at 1, 2 and 4 mspatial resolutions, applying a Gaussian Pyramid. Their associations with local climatic factors, measured by sensors (direct and ambient air temperature, air humidity and soil moisture) as well as ecological indicators derived fromspecies composition, were assessed with multivariate generalized linearmodels (GLM) andmixed models (GLMM). 3. Specific VHR DEM-derived variables showed significant associations with climatic factors. In addition to slope, aspect and curvature, the underused wetness and ruggedness indices modelledmeasured ambient humidity and soilmoisture, respectively. Remarkably, spatial resolution of VHR DEM-derived variables had a significant influence on models' strength, with coefficients of determination decreasing with coarser resolutions or showing a local optimumwith a 2 mresolution, depending on the variable considered. 4. These results support the relevance of using multi-scale DEM variables to provide surrogates for important climatic variables such as humidity, moisture and temperature, offering suitable alternatives to direct measurements for evolutionary ecology studies at a local scale.