152 resultados para VHDL, FPGA, Ethernet, High Throughput Screening


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Ultra high throughput sequencing (UHTS) technologies find an important application in targeted resequencing of candidate genes or of genomic intervals from genetic association studies. Despite the extraordinary power of these new methods, they are still rarely used in routine analysis of human genomic variants, in part because of the absence of specific standard procedures. The aim of this work is to provide human molecular geneticists with a tool to evaluate the best UHTS methodology for efficiently detecting DNA changes, from common SNPs to rare mutations. METHODOLOGY/PRINCIPAL FINDINGS: We tested the three most widespread UHTS platforms (Roche/454 GS FLX Titanium, Illumina/Solexa Genome Analyzer II and Applied Biosystems/SOLiD System 3) on a well-studied region of the human genome containing many polymorphisms and a very rare heterozygous mutation located within an intronic repetitive DNA element. We identify the qualities and the limitations of each platform and describe some peculiarities of UHTS in resequencing projects. CONCLUSIONS/SIGNIFICANCE: When appropriate filtering and mapping procedures are applied UHTS technology can be safely and efficiently used as a tool for targeted human DNA variations detection. Unless particular and platform-dependent characteristics are needed for specific projects, the most relevant parameter to consider in mainstream human genome resequencing procedures is the cost per sequenced base-pair associated to each machine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular diagnosis of retinal dystrophies is difficult because of the very important number of genes implicated and is rarely helped by genotype-phenotype correlations. This prompted us to develop IROme, a custom designed in solution-based targeted exon capture assay (SeqCap EZ Choice library, Roche NimbleGen) for 60 retinitis pigmentosa-linked genes and three candidate genes (942 exons). Pyrosequencing was performed on a Roche 454 GS Junior benchtop high-throughput sequencing platform. In total, 23 patients affected by retinitis pigmentosa were analyzed. Per patient, 39.6 Mb were generated, and 1111 sequence variants were detected on average, at a median coverage of 17-fold. After data filtering and sequence variant prioritization, disease-causing mutations were identified in ABCA4, CNGB1, GUCY2D, PROM1, PRPF8, PRPF31, PRPH2, RHO, RP2, and TULP1 for twelve patients (55%), ten mutations having never been reported previously. Potential mutations were identified in 5 additional patients, and in only 6 patients no molecular diagnosis could be established (26%). In conclusion, targeted exon capture and next-generation sequencing are a valuable and efficient approach to identify disease-causing sequence variants in retinal dystrophies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HTPSELEX is a public database providing access to primary and derived data from high-throughput SELEX experiments aimed at characterizing the binding specificity of transcription factors. The resource is primarily intended to serve computational biologists interested in building models of transcription factor binding sites from large sets of binding sequences. The guiding principle is to make available all information that is relevant for this purpose. For each experiment, we try to provide accurate information about the protein material used, details of the wet lab protocol, an archive of sequencing trace files, assembled clone sequences (concatemers) and complete sets of in vitro selected protein-binding tags. In addition, we offer in-house derived binding sites models. HTPSELEX also offers reasonably large SELEX libraries obtained with conventional low-throughput protocols. The FTP site contains the trace archives and database flatfiles. The web server offers user-friendly interfaces for viewing individual entries and quality-controlled download of SELEX sequence libraries according to a user-defined sequencing quality threshold. HTPSELEX is available from ftp://ftp.isrec.isb-sib.ch/pub/databases/htpselex/ and http://www.isrec.isb-sib.ch/htpselex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Q fever is a worldwide zoonotic infectious disease due to Coxiella burnetii. The clinical presentation may be acute (pneumonia and/or hepatitis) or chronic (most commonly endocarditis). Diagnosis mainly relies on serology and PCR. We therefore developed a quantitative real-time PCR. We first tested blindly its performance on various clinical samples and then, when thoroughly validated, we applied it during a 7-year period for the diagnosis of both acute and persistent C. burnetii infection. Analytical sensitivity (< 10 copies/PCR) was excellent. When tested blindly on 183 samples, the specificity of the PCR was 100% (142/142) and the sensitivity was 71% (29/41). The sensitivity was 88% (7/8) on valvular samples, 69% (20/29) on blood samples and 50% (2/4) on urine samples. This new quantitative PCR was then successfully applied for the diagnosis of acute Q fever and endovascular infection due to C. burnetii, allowing the diagnosis of Q fever in six patients over a 7-year period. During a local small cluster of cases, the PCR was also applied to blood from 1355 blood donors; all were negative confirming the high specificity of this test. In conclusion, we developed a highly specific method with excellent sensitivity, which may be used on sera for the diagnosis of acute Q fever and on various samples such as sera, valvular samples, aortic specimens, bone and liver, for the diagnosis of persistent C. burnetii infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to determine the location and relative strength of all transcription-factor binding sites in a genome is important both for a comprehensive understanding of gene regulation and for effective promoter engineering in biotechnological applications. Here we present a bioinformatically driven experimental method to accurately define the DNA-binding sequence specificity of transcription factors. A generalized profile was used as a predictive quantitative model for binding sites, and its parameters were estimated from in vitro-selected ligands using standard hidden Markov model training algorithms. Computer simulations showed that several thousand low- to medium-affinity sequences are required to generate a profile of desired accuracy. To produce data on this scale, we applied high-throughput genomics methods to the biochemical problem addressed here. A method combining systematic evolution of ligands by exponential enrichment (SELEX) and serial analysis of gene expression (SAGE) protocols was coupled to an automated quality-controlled sequence extraction procedure based on Phred quality scores. This allowed the sequencing of a database of more than 10,000 potential DNA ligands for the CTF/NFI transcription factor. The resulting binding-site model defines the sequence specificity of this protein with a high degree of accuracy not achieved earlier and thereby makes it possible to identify previously unknown regulatory sequences in genomic DNA. A covariance analysis of the selected sites revealed non-independent base preferences at different nucleotide positions, providing insight into the binding mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To develop and compare two new technologies for diagnosing a contiguous gene syndrome, the Williams-Beuren syndrome (WBS). METHODS: The first proposed method, named paralogous sequence quantification (PSQ), is based on the use of paralogous sequences located on different chromosomes and quantification of specific mismatches present at these loci using pyrosequencing technology. The second exploits quantitative real time polymerase chain reaction (QPCR) to assess the relative quantity of an analysed locus. RESULTS: A correct and unambiguous diagnosis was obtained for 100% of the analysed samples with either technique (n = 165 and n = 155, respectively). These methods allowed the identification of two patients with atypical deletions in a cohort of 182 WBS patients. Both patients presented with mild facial anomalies, mild mental retardation with impaired visuospatial cognition, supravalvar aortic stenosis, and normal growth indices. These observations are consistent with the involvement of GTF2IRD1 or GTF2I in some of the WBS facial features. CONCLUSIONS: Both PSQ and QPCR are robust, easy to interpret, and simple to set up. They represent a competitive alternative for the diagnosis of segmental aneuploidies in clinical laboratories. They have advantages over fluorescence in situ hybridisation or microsatellites/SNP genotyping for detecting short segmental aneuploidies as the former is costly and labour intensive while the latter depends on the informativeness of the polymorphisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The broad aim of biomedical science in the postgenomic era is to link genomic and phenotype information to allow deeper understanding of the processes leading from genomic changes to altered phenotype and disease. The EuroPhenome project (http://www.EuroPhenome.org) is a comprehensive resource for raw and annotated high-throughput phenotyping data arising from projects such as EUMODIC. EUMODIC is gathering data from the EMPReSSslim pipeline (http://www.empress.har.mrc.ac.uk/) which is performed on inbred mouse strains and knock-out lines arising from the EUCOMM project. The EuroPhenome interface allows the user to access the data via the phenotype or genotype. It also allows the user to access the data in a variety of ways, including graphical display, statistical analysis and access to the raw data via web services. The raw phenotyping data captured in EuroPhenome is annotated by an annotation pipeline which automatically identifies statistically different mutants from the appropriate baseline and assigns ontology terms for that specific test. Mutant phenotypes can be quickly identified using two EuroPhenome tools: PhenoMap, a graphical representation of statistically relevant phenotypes, and mining for a mutant using ontology terms. To assist with data definition and cross-database comparisons, phenotype data is annotated using combinations of terms from biological ontologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma catecholamines provide a reliable biomarker of sympathetic activity. The low circulating concentrations of catecholamines and analytical interferences require tedious sample preparation and long chromatographic runs to ensure their accurate quantification by HPLC with electrochemical detection. Published or commercially available methods relying on solid phase extraction technology lack sensitivity or require derivatization of catecholamine by hazardous reagents prior to tandem mass spectrometry (MS) analysis. Here, we manufactured a novel 96-well microplate device specifically designed to extract plasma catecholamines prior to their quantification by a new and highly sensitive ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. Processing time, which included sample purification on activated aluminum oxide and elution, is less than 1 h per 96-well microplate. The UPLC-MS/MS analysis run time is 2.0 min per sample. This UPLC-MS/MS method does not require a derivatization step, reduces the turnaround time by 10-fold compared to conventional methods used for routine application, and allows catecholamine quantification in reduced plasma sample volumes (50-250 μL, e.g., from children and mice).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mendelian cardiomyopathies and arrhythmias are characterized by an important genetic heterogeneity, rendering Sanger sequencing very laborious and expensive. As a proof of concept, we explored multiplex targeted high-throughput sequencing (HTS) as a fast and cost-efficient diagnostic method for individuals suffering from Mendelian cardiac disorders. We designed a DNA capture assay including all exons from 130 genes involved in cardiovascular Mendelian disorders and analysed simultaneously four samples by multiplexing. Two patients had familial hypertrophic cardiomyopathy (HCM) and two patients suffered from long QT syndrome (LQTS). In patient 1 with HCM, we identified two known pathogenic missense variants in the two most frequently mutated sarcomeric genes MYH7 and MYBPC. In patient 2 with HCM, a known acceptor splice site variant in MYBPC3 was found. In patient 3 with LQTS, two missense variants in the genes SCN5A and KCNQ were identified. Finally, in patient 4 with LQTS a known missense variant was found in MYBPC3, which is usually mutated in patients with cardiomyopathy. Our results showed that multiplex targeted HTS works as an efficient and cost-effective tool for molecular diagnosis of heterogeneous disorders in clinical practice and offers new insights in the pathogenesis of these complex diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'introduction des technologies de séquençage de nouvelle génération est en vue de révolutionner la médecine moderne. L'impact de ces nouveaux outils a déjà contribué à la découverte de nouveaux gènes et de voies cellulaires impliqués dans la pathologie de maladies génétiques rares ou communes. En revanche, l'énorme quantité de données générées par ces systèmes ainsi que la complexité des analyses bioinformatiques nécessaires, engendre un goulet d'étranglement pour résoudre les cas les plus difficiles. L'objectif de cette thèse a été d'identifier les causes génétiques de deux maladies héréditaires utilisant ces nouvelles techniques de séquençage, couplées à des technologies d'enrichissement de gènes. Dans ce cadre, nous avons développé notre propre méthode de travail (pipeline) pour l'alignement des fragments de séquence (reads). Suite à l'identification de gènes, nous avons réalisé une analyse fonctionnelle pour élucider leur rôle dans la maladie. Dans un premier temps, nous avons étudié et identifié des mutations impliquées dans une forme récessive de la rétinite pigmentaire qui est à ce jour la dégénérescence rétinienne héréditaire la plus fréquente. En particulier, nous avons constaté que des mutations faux-sens dans le gène FAM161A étaient la cause de la rétinite pigmentaire préalablement associé avec le locus RP28. De plus, nous avons démontré que ce gène avait des fonctions au niveau du cil du photorécepteur, complétant le large spectre des cilliopathies rétiniennes héréditaires. Dans un second temps, nous avons exploré la possibilité qu'un syndrome, relativement fréquent en pédiatrie de fièvre récurrente, appelé PFAPA (acronyme de fièvre périodique avec adénite stomatite, pharyngite et cervical aphteuse) puisse avoir une origine génétique. L'étiologie de cette maladie n'étant pas claire, nous avons tenté d'identifier le spectre génétique de patients PFAPA. Comme nous n'avons pas pu mettre à jour un nouveau gène unique muté et responsable de la maladie chez tous les individus dépistés, il semblerait qu'un modèle génétique plus complexe suggérant l'implication de plusieurs gènes dans la pathologie ait été identifié chez les patients touchés. Ces gènes seraient notamment impliqués dans des processus liés à l'inflammation ce qui élargirait l'impact de ces études à d'autres maladies auto-inflammatoires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most fishes produce free-living embryos that are exposed to environmental stressors immediately following fertilization, including pathogenic microorganisms. Initial immune protection of embryos involves the chorion, as a protective barrier, and maternally-allocated antimicrobial compounds. At later developmental stages, host-genetic effects influence susceptibility and tolerance, suggesting a direct interaction between embryo genes and pathogens. So far, only a few host genes could be identified that correlate with embryonic survival under pathogen stress in salmonids. Here, we utilized high-throughput RNA-sequencing in order to describe the transcriptional response of a non-model fish, the Alpine whitefish Coregonus palaea, to infection, both in terms of host genes that are likely manipulated by the pathogen, and those involved in an early putative immune response. Embryos were produced in vitro, raised individually, and exposed at the late-eyed stage to a virulent strain of the opportunistic fish pathogen Pseudomonas fluorescens. The pseudomonad increased embryonic mortality and affected gene expression substantially. For example, essential, upregulated metabolic pathways in embryos under pathogen stress included ion binding pathways, aminoacyl-tRNA-biosynthesis, and the production of arginine and proline, most probably mediated by the pathogen for its proliferation. Most prominently downregulated transcripts comprised the biosynthesis of unsaturated fatty acids, the citrate cycle, and various isoforms of b-cell transcription factors. These factors have been shown to play a significant role in host blood cell differentiation and renewal. With regard to specific immune functions, differentially expressed transcripts mapped to the complement cascade, MHC class I and II, TNF-alpha, and T-cell differentiation proteins. The results of this study reveal insights into how P. fluorescens impairs the development of whitefish embryos and set a foundation for future studies investigating host pathogen interactions in fish embryos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study shows the possibility offered by modern ultra-high performance supercritical fluid chromatography combined with tandem mass spectrometry in doping control analysis. A high throughput screening method was developed for 100 substances belonging to the challenging classes of anabolic agents, hormones and metabolic modulators, synthetic cannabinoids and glucocorticoids, which should be detected at low concentrations in urine. To selectively extract these doping agents from urine, a supported liquid extraction procedure was implemented in a 48-well plate format. At the tested concentration levels ranging from 0.5 to 5 ng/mL, the recoveries were better than 70% for 48-68% of the compounds and higher than 50% for 83-87% of the tested substances. Due to the numerous interferences related to isomers of steroids and ions produced by the loss of water in the electrospray source, the choice of SFC separation conditions was very challenging. After careful optimization, a Diol stationary phase was employed. The total analysis time for the screening assay was only 8 min, and interferences as well as susceptibility to matrix effect (ME) were minimized. With the developed method, about 70% of the compounds had relative ME within the range ±20%, at a concentration of 1 and 5 ng/mL. Finally, limits of detection achieved with the above-described strategy including 5-fold preconcentration were below 0.1 ng/mL for the majority of the tested compounds. Therefore, LODs were systematically better than the minimum required performance levels established by the World anti-doping agency, except for very few metabolites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated promoter hypermethylation of TP53 regulatory pathways providing a potential link between epigenetic changes and mitochondrial DNA (mtDNA) alterations in breast cancer patients lacking a TP53 mutation. The possibility of using the cancer-specific alterations in serum samples as a blood-based test was also explored. Triple-matched samples (cancerous tissues, matched adjacent normal tissues and serum samples) from breast cancer patients were screened for TP53 mutations, and the promoter methylation profile of P14(ARF), MDM2, TP53 and PTEN genes was analyzed as well as mtDNA alterations, including D-loop mutations and mtDNA content. In the studied cohort, no mutation was found in TP53 (DNA-binding domain). Comparison of P14(ARF) and PTEN methylation patterns showed significant hypermethylation levels in tumor tissues (P < 0.05 and <0.01, respectively) whereas the TP53 tumor suppressor gene was not hypermethylated (P < 0.511). The proportion of PTEN methylation was significantly higher in serum than in the normal tissues and it has a significant correlation to tumor tissues (P < 0.05). mtDNA analysis revealed 36.36% somatic and 90.91% germline mutations in the D-loop region and also significant mtDNA depletion in tumor tissues (P < 0.01). In addition, the mtDNA content in matched serum was significantly lower than in the normal tissues (P < 0.05). These data can provide an insight into the management of a therapeutic approach based on the reversal of epigenetic silencing of the crucial genes involved in regulatory pathways of the tumor suppressor TP53. Additionally, release of significant aberrant methylated PTEN in matched serum samples might represent a promising biomarker for breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hemorrhagic fevers caused by arenaviruses are among the most devastating emerging human diseases. Considering the number of individuals affected, the current lack of a licensed vaccine, and the limited therapeutic options, arenaviruses are arguably among the most neglected tropical pathogens and the development of efficacious anti-arenaviral drugs is of high priority. Over the past years significant efforts have been undertaken to identify novel potent inhibitors of arenavirus infection. High throughput screening of small molecule libraries employing pseudotype platforms led to the discovery of several potent and broadly active inhibitors of arenavirus cell entry that are effective against the major hemorrhagic arenaviruses. Mechanistic studies revealed that these novel entry inhibitors block arenavirus membrane fusion and provided novel insights into the unusual mechanism of this process. The success of these approaches highlights the power of small molecule screens in antiviral drug discovery and establishes arenavirus membrane fusion as a robust drug target. These broad screenings have been complemented by strategies targeting cellular factors involved in productive arenavirus infection. Approaches targeting the cellular protease implicated in maturation of the fusion-active viral envelope glycoprotein identified the proteolytic processing of the arenavirus glycoprotein precursor as a novel and promising target for anti-arenaviral strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digital Holographic Microscopy (DHM), is a new imaging technique allowing to provide quantitative phase images with a high accuracy and stability making possible to explore a large variety of relevant processes, occurring on the p.s to day time scale, in the fields including material research as well as cell biology. As a non invasive and real time imaging technique, DHM is particularly well suited for high throughput screening