53 resultados para University of New Brunswick
Resumo:
Intracellular pathogens such as legionella, mycobacteria and Chlamydia-like organisms are difficult to isolate because they often grow poorly or not at all on selective media that are usually used to cultivate bacteria. For this reason, many of these pathogens were discovered only recently or following important outbreaks. These pathogens are often associated with amoebae, which serve as host-cell and allow the survival and growth of the bacteria. We intend here to provide a demonstration of two techniques that allow isolation and characterization of intracellular pathogens present in clinical or environmental samples: the amoebal coculture and the amoebal enrichment. Amoebal coculture allows recovery of intracellular bacteria by inoculating the investigated sample onto an amoebal lawn that can be infected and lysed by the intracellular bacteria present in the sample. Amoebal enrichment allows recovery of amoebae present in a clinical or environmental sample. This can lead to discovery of new amoebal species but also of new intracellular bacteria growing specifically in these amoebae. Together, these two techniques help to discover new intracellular bacteria able to grow in amoebae. Because of their ability to infect amoebae and resist phagocytosis, these intracellular bacteria might also escape phagocytosis by macrophages and thus, be pathogenic for higher eukaryotes.
Resumo:
As acute nonlymphocytic leukemia (ANLL) with inv(16) (p13q22) or t(16;16)(p13;q22) has been shown to result from the fusion of transcription factor subunit core binding factor (CBFB) to a myosin heavy chain (MYH11), we sought to design methods to detect this rearrangement using reverse transcriptase-polymerase chain reaction (RT-PCR). In all of 27 inv(16)(p13q22) and four t(16;16)(p13;q22) cases tested, a chimeric CBFB-MYH11 transcript coding for an in-frame fusion protein was detected. In a more extensive RT-PCR analysis with different primer pairs, we detected a second new chimeric CBFB-MYH11 transcript in 10 of 11 patients tested. The CBFB-MYH11 reading frame of the second transcript was maintained in one patient but not in the others. We show that the different CBFB-MYH11 transcripts in one patient arise from alternative splicing. Translation of the transcript in which the CBFB-MYH11 reading frame is not maintained leads to a slightly truncated CBFB protein.
Resumo:
The variation with latitude of incidence and mortality for cutaneous malignant melanoma (CMM) in the non-Maori population of New Zealand was assessed. For those aged 20 to 74 years, the effects of age, time period, birth-cohort, gender, and region (latitude), and some interactions between them were evaluated by log-linear regression methods. Increasing age-standardized incidence and mortality rates with increasing proximity to the equator were found for men and women. These latitude gradients were greater for males than females. The relative risk of melanoma in the most southern part of New Zealand (latitude 44 degrees S) compared with the most northern region (latitude 36 degrees S) was 0.63 (95 percent confidence interval [CI] = 0.60-0.67) for incidence and 0.76 (CI = 0.68-0.86) for mortality, both genders combined. The mean percentage change in CMM rates per degree of latitude for males was greater than those reported in other published studies. Differences between men and women in melanoma risk with latitude suggest that regional sun-behavior patterns or other risk factors may contribute to the latitude gradient observed.
Resumo:
Frequent expression of cancer testis antigens (CTA) has been consistently observed in head and neck squamous cell carcinomas (HNSCC). For instance, in 52 HNSCC patients, MAGE-A3 and -A4 CTA were expressed in over 75% of tumors, regardless of the sites of primary tumors such as oral cavity or hypopharynx. Yet, T-cell responses against these CTA in tumor-bearing patients have not been investigated in detail. In this study, we assessed the naturally acquired T-cell response against MAGE-A3 and -A4 in nonvaccinated HNSCC patients. Autologous antigen-presenting cells pulsed with overlapping peptide pools were used to detect and isolate MAGE-A3 and MAGE-A4 specific CD4(+) T cells from healthy donors and seven head and neck cancer patients. CD4(+) T-cell clones were characterized by cytokine secretion. We could detect and isolate MAGE-A3 and MAGE-A4 specific CD4(+) T cells from 7/7 cancer patients analyzed. Moreover, we identified six previously described and three new epitopes for MAGE-A3. Among them, the MAGE-A3(111-125) and MAGE-A3(161-175) epitopes were shown to be naturally processed and presented by DC in association with HLA-DP and DR, respectively. All of the detected MAGE-A4 responses were specific for new helper epitopes. These data suggest that naturally acquired CD4(+) T-cell responses against CT antigens often occur in vivo in HNSCC cancer patients and provide a rationale for the development of active immunotherapeutic approaches in this type of tumor.
Resumo:
Recent studies have revealed that our sex chromosomes differentiated relatively recently from ancestral autosomes in the common ancestor of placental and marsupial mammals (therians). Here, we show that the therian X started to accumulate new retroduplicate genes with overall sex-biased expression upon therian sex chromosome differentiation. This process reached its peak within the first approximately 90 million years of sex chromosome evolution and then leveled off. Taken together, our observations suggest that the major sex-related functional remodeling of the X was completed relatively soon after the origination of therian sex chromosomes.
Resumo:
Plant metabolic engineering has recently enabled the synthesis of a range of polyhydroxyalkanoates as well as a protein-based polymer. These novel compounds can be harvested from plants as a renewable source of environmentally friendly polymers or can be used to change the physical properties of plant products, such as fibres.
Resumo:
Summary Cancer is a leading cause of morbidity and mortality in Western countries (as an example, colorectal cancer accounts for about 300'000 new cases and 200'000 deaths each year in Europe and in the USA). Despite that many patients with cancer have complete macroscopic clearance of their disease after resection, radiotherapy and/or chemotherapy, many of these patients develop fatal recurrence. Vaccination with immunogenic peptide tumor antigens has shown encouraging progresses in the last decade; immunotherapy might therefore constitute a fourth therapeutic option in the future. We dissect here and critically evaluate the numerous steps of reverse immunology, a forecast procedure to identify antigenic peptides from the sequence of a gene of interest. Bioinformatic algorithms were applied to mine sequence databases for tumor-specific transcripts. A quality assessment of publicly available sequence databanks allowed defining strengths and weaknesses of bioinformatics-based prediction of colon cancer-specific alternative splicing: new splice variants could be identified, however cancer-restricted expression could not be significantly predicted. Other sources of target transcripts were quantitatively investigated by polymerase chain reactions, as cancer-testis genes or reported overexpressed transcripts. Based on the relative expression of a defined set of housekeeping genes in colon cancer tissues, we characterized a precise procedure for accurate normalization and determined a threshold for the definition of significant overexpression of genes in cancers versus normal tissues. Further steps of reverse immunology were applied on a splice variant of the Melan¬A gene. Since it is known that the C-termini of antigenic peptides are directly produced by the proteasome, longer precursor and overlapping peptides encoded by the target sequence were synthesized chemically and digested in vitro with purified proteasome. The resulting fragments were identified by mass spectroscopy to detect cleavage sites. Using this information and based on the available anchor motifs for defined HLA class I molecules, putative antigenic peptides could be predicted. Their relative affinity for HLA molecules was confirmed experimentally with functional competitive binding assays and they were used to search patients' peripheral blood lymphocytes for the presence of specific cytolytic T lymphocytes (CTL). CTL clones specific for a splice variant of Melan-A could be isolated; although they recognized peptide-pulsed cells, they failed to lyse melanoma cells in functional assays of antigen recognition. In the conclusion, we discuss advantages and bottlenecks of reverse immunology and compare the technical aspects of this approach with the more classical procedure of direct immunology, a technique introduced by Boon and colleagues more than 10 years ago to successfully clone tumor antigens.
Resumo:
Aleppo pine (Pinus halepensis Mill.) is a relevant conifer species for studying adaptive responses to drought and fire regimes in the Mediterranean region. In this study, we performed Illumina next-generation sequencing of two phenotypically divergent Aleppo pine accessions with the aims of (i) characterizing the transcriptome through Illumina RNA-Seq on trees phenotypically divergent for adaptive traits linked to fire adaptation and drought, (ii) performing a functional annotation of the assembled transcriptome, (iii) identifying genes with accelerated evolutionary rates, (iv) studying the expression levels of the annotated genes and (v) developing gene-based markers for population genomic and association genetic studies. The assembled transcriptome consisted of 48,629 contigs and covered about 54.6 Mbp. The comparison of Aleppo pine transcripts to Picea sitchensis protein-coding sequences resulted in the detection of 34,014 SNPs across species, with a Ka /Ks average value of 0.216, suggesting that the majority of the assembled genes are under negative selection. Several genes were differentially expressed across the two pine accessions with contrasted phenotypes, including a glutathione-s-transferase, a cellulose synthase and a cobra-like protein. A large number of new markers (3334 amplifiable SSRs and 28,236 SNPs) have been identified which should facilitate future population genomics and association genetics in this species. A 384-SNP Oligo Pool Assay for genotyping with the Illumina VeraCode technology has been designed which showed an high overall SNP conversion rate (76.6%). Our results showed that Illumina next-generation sequencing is a valuable technology to obtain an extensive overview on whole transcriptomes of nonmodel species with large genomes.
Resumo:
Since the beginning of the 1990's, a dozen of new anti-epileptic drugs have been on the market or will be soon. This article reviews the daily clinical utilisation of new anti-epileptic drugs. It considers, without being complete, the current opinions and tendencies. The new anti-epileptic substances are generally as efficient as conventional medications. However, they are better tolerated and are more easily used in combination with conventional anti-epileptic drugs. Polytherapy is certainly the form of treatment, which is used in the most cases of resistant epilepsies. The surgical treatment can be used in only a very limited number of cases. The objective of treatment is the complete control of seizures, with minimum secondary effects. Though this objective is rarely reached, the NAE significantly improves the quality of life of patients suffering from severe epilepsy. The utilisation of NAE is not without risk. Increase in the frequency and severity of seizures may occur; we should remember that severe adverse effects appeared in the post-marketing period of the use of Vigabatrine and Felbamate. Therefore, we must remain vigilant in the clinical use of the anti-epileptic drugs.