110 resultados para U-pb Ages
Resumo:
New geochronological data which clarify the timing of syn-orogenic magmatism and regional metamorphism in the Connemara Dalradian are presented. U-Pb zircon data on four intermediate to acid foliated magmatic rocks show important inherited components but the most concordant fractions demonstrate that major magmatism continued until 465 Ma whereas the earliest, basic magmatism has been dated previously at 490 Ma; a fine-grained, fabric-cutting granite contains discordant zircons which also appear to be 465 Ma old. Are magmatism in Connemara therefore spanned a period of at least 25 Ma. Recent U-Pb data on titanite from central Connemara which gave a peak metamorphic age of 478 Ma are supplemented by U-Pb data on titanite and monazite from metamorphic veins in the east of Connemara which indicate that low-P, high-T regional metamorphism ism continued there to 465 Ma, i.e. at least 10 Ma later than in the central region dated previously. New Rb-Sr data on muscovites from coarse-grained segregations in different structural settings range from 475 to 435 Ma; in part this range probably also reflects differences in age from west to east, with three ages close to 455 Ma from the eastern area, which is also the site of the lowest pressure metamorphism. Thermal modelling indicates that at any one locality the duration of metamorphism was probably as little as 1-2 Ma. The new dates emphasize the complexity in the spatial and temporal distribution of high-level regional metamorphism caused by magmatic activity. The relatively simple overall distribution of mineral-appearance isograds revealed by regional mapping masks the complexity of a prolonged but punctuated metamorphic history related to multiple intrusions, primarily in the southern part of Connemara. The later stages of magmatic activity followed progressive uplift and erosion after the onset of magmatism, and were localized in the eastern part of the region.
Resumo:
A metasomatic diopside rock occurs at the top of the dolomitic Connemara Marble Formation of western Ireland and contains titanite and K-feldspar in addition to around 90% diopside (X(Mg) = 0.90-0.97). U-Pb isotopic measurements on this mineral assemblage show that the titanite is both unusually uranium-rich and isotopically concordant, with the result that a precise U-Pb age of 478 +/- 2.5 Ma can be determined. The age is identical within error to a less precise Rb-Sr age of diopside-K-feldspar of 483 +/- 6 Ma. Petrological evidence indicates that the assemblage crystallized at c. 620-degrees-C close to or below the closure temperature of titanite. The age thus provides a precise estimate of the time of metamorphism; this age is 11 +/- 3 Ma younger than the 490 Ma age for nearby gabbroic plutons which has previously been used to constrain the peak metamorphic age. This difference accords well with geological evidence that the gabbros were emplaced prior to the metamorphic peak. Analysis of minerals with high closure temperature from assemblages whose crystallization is unambiguously associated with a specific episode of fluid infiltration at the peak of metamorphism provides the basis for a new approach to dating metamorphism. The success of this approach is demonstrated by the results from Connemara.
Resumo:
The results of a coupled, in situ laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb study on zircon and geochemical characterization of the Eastern Cordilleran intrusives of Peru reveal 1.15 Ga of intermittent magmatism along central Western Amazonia, the Earth's oldest active open continental margin. The eastern Peruvian batholiths are volumetrically dominated by plutonism related to the assembly and breakup of Pangea during the Paleozoic-Mesozoic transition. A Carboniferous-Permian (340-285 Ma) continental arc is identified along the regional orogenic strike from the Ecuadorian border (6 degrees S) to the inferred inboard extension of the Arequipa-Antofalla terrane in southern Peru (14 degrees S). Widespread crustal extension and thinning, which affected western Gondwana throughout the Permian and Triassic resulted in the intrusion of the late- to post-tectonic La Merced-San Ramon-type anatectites dated between 275 and 220 Ma, while the emplacement of the southern Cordillera de Carabaya peraluminous granitoids in the Late Triassic to Early Jurassic (220-190 Ma) represents, temporally and regionally, a separate tectonomagmatic event likely related to resuturing of the Arequipa-Antofalla block. Volcano-plutonic complexes and stocks associated with the onset of the present Andean cycle define a compositionally bimodal alkaline suite and cluster between 180 and 170 Ma. A volumetrically minor intrusive pulse of Oligocene age (ca. 30 Ma) is detected near the southwestern Cordilleran border with the Altiplano. Both post-Gondwanide (30-170 Ma), and Precambrian plutonism (691-1123 Ma) are restricted to isolated occurrences spatially comprising less than 15% of the Eastern Cordillera intrusives. Only one remnant of a Late Ordovician intrusive belt is recognized in the Cuzco batholith (446.5 +/- 9.7 Ma) indicating that the Famatinian arc system previously identified in Peru along the north-central Eastern Cordillera and the coastal Arequipa-Antofalla terrane also existed inboard of this parautochthonous crustal fragment. Hitherto unknown occurrences of late Mesoproterozoic and middle Neoproterozoic granitoids from the south-central cordilleran segment define magmatic events at 691 +/- 13 Ma, 751 +/- 8 Ma, 985 +/- 14 Ma, and 1071-1123 +/- 23 Ma that are broadly coeval with the Braziliano and Grenville-Sunsas orogenies, respectively. Our data suggest the existence of a continuous orogenic belt in excess of 3500 km along Western Amazonia during the formation of Rodinia, its ``early'' fragmentation prior to 690 Ma, and support a model of reaccretion of the Paracas-Arequipa-Antofalla terrane to western Gondwana in the Early Ordovician with subsequent detachment of the Paracas segment in form of the Mexican Oaxaquia microcontinent in Middle Ordovician. A tectonomagmatic model involving slab detachment, followed by underplating of cratonic margin by asthenospheric mantle is proposed for the genesis of the volumetrically dominant Late Paleozoic to early Mesozoic Peruvian Cordilleran batholiths.
Resumo:
Recrystallization rims are a common feature of zircon crystals that underwent metamorphism. We present a microstructural and microchemical study of partially recrystallized zircon grains collected in polymetamorphic migmatites (Valle d'Arbedo, Ticino, Switzerland). The rims are bright in cathodo-luminescence (CL), with sharp and convex contacts characterized by inward-penetrating embayments transgressing igneous zircon cores. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data and transmission electron microscopy (TEM) imaging indicate that the rims are chemically and microstructurally different from the cores. The rims are strongly depleted in REE, with concentrations up to two orders of magnitude lower than in the cores, indicating a significant loss of REE during zircon recrystallization. Enrichment in non-formula elements, such as Ca, has not been observed in the rims. The microstructure of zircon cores shows a dappled intensity at and below the 100 nm scale, possibly due to radiation damage. Other defects such as pores and dislocations are absent in the core except at healed cracks. Zircon rims are mostly dapple-free, but contain nanoscale pores and strain centers, interpreted as fluid inclusions and chemical residues, respectively. Sensitive high-resolution ion microprobe (SHRIMP) U-Pb ages show that the recrystallization of the rims took place >200 Ma ago when the parent igneous zircon was not metamict. The chemical composition and the low-Ti content of the rims indicate that they form at sub-solidus temperatures (550-650 degrees C). Recrystallization rims in Valle d'Arbedo zircon are interpreted as the result of the migration of chemical reaction fronts in which fluid triggered in situ and contemporaneous interface-coupled dissolution-reprecipitation mechanisms. This study indicates that strong lattice strain resulting from the incorporation of a large amount of impurities and structural defects is not a necessary condition for zircon to recrystallize. Our observations suggest that the early formation of recrystallization rims played a major role in preserving zircon from the more recent Alpine metamorphic overprint.
Resumo:
New biostratigraphic data significantly improve the age assignment of the Ladinian succession of Monte San Giorgio (UNESCO World Heritage List site, Southern Alps, Switzerland), whose world-famous fossil marine vertebrate faunas are now dated to the substage and zone levels. High-resolution single-zircon U-Pb dating was performed using ID-TIMS and chemical abrasion (CA) pre-treatment technique on volcanic ash layers intercalated in the biostratigraphically-defined intervals of the Meride Limestone. It yielded ages of 241.07 +/- 0.13 Ma (Cava superiore beds, P. gredleri Zone), 240.63 +/- 0.13 Ma (Cassina beds, P gredleri/P. archelaus transition Zone) and 239.51 +/- 0.15 Ma (Lower Kalkschieferzone, P. archelaus Zone). Our results suggest that the time interval including the vertebrate-bearing Middle Triassic section spans around 4 Myr and is thus significantly shorter than so far assumed. The San Giorgio Dolomite and the Meride Limestone correlate with intervals of the Buchenstein Formation and the Wengen Formation in the reference section at Bagolino, where the Global boundary Stratotype Section and Point (GSSP) for the base of the Ladinian was defined. The new radio-isotopic ages of the Meride Limestone are up to 2 Myr older than those published for the biostratigraphically-equivalent intervals at Bagolino but they are consistent with the recent re-dating of the underlying Besano Formation, also performed using the CA technique. Average sedimentation rates at Monte San Giorgio are by more than an order of magnitude higher compared to those assumed for the Buchenstein Formation, which formed under sediment-starved pelagic conditions, and reflect prevailing high subsidence and high carbonate mud supply from the adjoining Salvatore/Esino platforms. Finally, the high-resolution U-Pb ages allow a correlation of the vertebrate faunas of the Cava superiore/Cava inferiore beds with the marine vertebrate record of the Prosanto Formation (Upper Austroalpine), so far precluded by the poor biostratigraphic control of the latter.
Resumo:
Résumé pour le grand public L'île de Fuerteventura (Canaries) offre l'occasion rare d'observer les racines d'un volcan océanique édifié il y a 25 à 30 millions d'années et complètement érodé. On y voit de nombreux petits plutons de forme et composition variées, témoignant d'autant d'épisodes de l'activité magmatique. L'un de ces plutons, appelé PX1, présente une structure inhabituelle formée d'une alternance de bandes verticales d'épaisseur métrique à hectométrique de roches sombres de composition pyroxénilique ou gabbroïque. Les pyroxénites résultent clairement de l'accumulation de cristaux de pyroxènes et non de la simple solidification d'un magma? Se pose dès lors la question de la nature du processus qui a conduit à l'accumulation verticale de niveaux concentrés en pyroxènes. En effet, les litages pyroxénitiques classiques sont subhorizontaux, car ils résultent de l'accumulation gravitaire des cristaux séparés du magma dont ils cristalli¬sent par sédimentation. Cette étude vise à identifier et comprendre les mécanismes qui ont engendré ce Iitage minéralogique vertical et l'im¬portant volume de ces faciès cumulatifs. Nous nous sommes également intéressés aux conditions de pression et de température régnant au moment de la mise en place du pluton, ainsi qu'à sa durée de vie et à sa vitesse de refroidis¬sement. Enfin une approche géochimique nous a permis de préciser la nature de la source mantellique des magmas liés à cette activité magmatique. PX1 est en réalité un complexe filonien formé à des conditions de pression et de température de 1-2 kbar et 1050- 1100°C; sa construction a nécessité au moins 150 km3 de magma. L'alternance d'horizons gabbroïques et pyroxéniti¬ques représente des injections successives de magma sous la forme de filons verticaux, mis en place dans un contexte régional en extension. L'étude des orientations des minéraux dans ces faciès révèle que les horizons gabbroïques enregistrent l'extension régionale, alors que les pyroxénites sont générées par une compaction au sein du pluton. Ceci suggère que le régime des contraintes, qui était extensif lors de l'initiation de la mise en place de PX1, est pério¬diquement devenu compressif au sein même du pluton. Cette compression serait liée à des cycles de mise en place où la vitesse de croissance du pluton dépassait celle de l'extension régionale. La différenciation observée au sein de chaque horizon, depuis des pyroxénites riches en olivine jusqu'à des pyroxé¬nites à plagioclase interstitiel et des gabbros, ainsi que la composition géochimique des minéraux qui les constituent suggèrent que chaque filon vertical s'est mis en place à partir d'un magma de composition identique, puis a évolué indépendamment des autres en fonction du régime thermique et du régime des contraintes local. Lorsque le magma en train de cristalliser s'est trouvé en compression, le liquide résiduel a été séparé des cristaux déjà formés et extrait du système, laissant derrière lui une accumulation de cristaux dont la nature et les proportions dépendaient du stade de cristallisation atteint par le magma au moment de l'extraction. Ainsi, les niveaux de pyroxénites à olivine (premier minéral à cristalliser) ont été formés lorsque le magma correspondant était encore peu cristallisé; à l'inverse, les py¬roxénites riches en plagioclase (minéral plus tardif dans la séquence de cristallisation) et certains gabbros à caractère cumulatif résultent d'une compression tardive dans le processus de cristallisation du filon concerné. Les liquides résiduels extraits des niveaux pyroxénitiques sont rarement observés dans PX1, certaines poches et filonets de com¬position anorthositique pourraient en être les témoins. L'essentiel de ces liquides a probablement gagné des niveaux supérieurs du pluton, voire la surface du volcan. L'origine du régime compressif périodique affectant les filons en voie de cristallisation est attribuée aux injections suivantes de magma au sein du pluton, qui se sont succédées à un rythme plus rapide que la vitesse de consolidation des filons. Des datations U/Pb de haute précision sur des cristaux de zircon et de baddeleyite ainsi que40Ar/39Ar sur des cris¬taux d'amphibole révèlent une initiation de la mise en place de PX1 il y a 22.1 ± 0,7 Ma; celle-ci a duré quelque 0,48 ± 0,22 à 0,52 ± 0,29 Ma. Ce laps de temps est compatible avec celui nécessaire à la cristallisation des filons individuels, qui va de moins d'une année lors de l'initiation du magmatisme à 5 ans lors du maximum d'activité de PX1. La présence de cristaux résorbés enregistrant une cristallisation complexe suggère l'existence d'une chambre mag¬matique convective sous-jacente à PX1 et périodiquement rechargée. Les compositions isotopiques des roches étu¬diées révèlent une source mantellique profonde de type point chaud avec une contribution du manteau lithosphéri- que métasomatisé présent sous les îles Canaries. Résumé L'intrusion mafique Miocène PX1 fait partie du soubassement superficiel (0.15-0.2 GPa, 1100 °Q d'un volcan d'île océanique. La particularité de ce pluton est l'existence d'alternances d'unités de gabbros et de pyroxénites qui met¬tent en évidence un litage magmatique vertical (NNE-SSW). Les horizons gabbroiques et pyroxénitiques sont constitués d'unités de différenciation métriques qui suggèrent tine mise en place par injections périodiques de filons verticaux de magma formant un complexe filonien. Chaque filon vertical a subi une différenciation parallèle à un front de solidification sub-vertical parallèle aux bords du filon. Les pyroxénites résultent du fractionnement et de l'accumulation d'olivine ± clinopyroxene ± plagioclase à partir d'un magma basaltique faiblement alcalin et sont interprétées comme étant des imités de différenciation tronquées dont le liquide interstitiel a été extrait par compaction. L'orientation préférentielle des clinopyroxènes dans ces pyroxe- nites (obtenues par analyse EBSD et micro-tomographique) révèle une composante de cisaillement simple dans la genèse de ces roches, ce qui confirme cette interprétation. La compaction des pyroxénites est probablement causée par a mise en place de filons de magma suivants. Le liquide interstitiel expulsé est probablement par ces derniers. Les clinopyroxènes des gabbros, montrent une composante de cisaillement pure suggérant qu'ils sont affectés par une déformation syn-magmatique parallèle aux zones de cisaillement NNE-SSW observées autour de PX1 et liées au contexte tectonique Miocène d'extension régionale. Ceci suggère que les gabbros sont liés à des taux de mise en place faibles à la fin de cycles d'activité magmatique et sont peu ou pas affectés par la compaction. L'initiation et la géométrie de PX1 sont donc contrôlées par le contexte tectonique régional d'extension alors que les taux et les volumes de magma dépendent de facteurs liés à la source. Des taux d'injection élevés résultent probable¬ment en une croissance du pluton supérieure à la place crée par cette extension. Dans ce cas de figure, la propagation des nouveaux dykes et l'inaptitude du magma à circuler à travers les anciens dykes cristallisés pourrait causer une augmentation de la pression non-lithostatique sur ces derniers, exprimée par un cisaillement simple et l'expulsion du liquide interstitiel qu'ils contiennent (documenté par les zones de collecte anorthositiques). Les compositions en éléments majeurs et traces des gabbros et pyroxenites de PX1 sont globalement homogènes et dépendent de la nature cumulative des échantillons. Cependant, de petites variations des concentrations en éléments traces ainsi que les teneurs en éléments traces des bordures de clinopyroxenes suggèrent que ces derniers ont subi un processus de rééquilibrage et de cristallisation in situ. L'homogénéité des compositions chimiques des échantillons, ainsi que la présence de grains de clinopyroxene résorbés suggère que le complexe filonien PX1 s'est mis en place au dessus d'une chambre magmatique périodiquement rechargée dans laquelle la convection est efficace. Chaque filon est donc issu d'un même magma, mais a subi une différenciation par cristallisation in situ (jusqu'à 70% de fraction¬nement) indépendamment des autres. Dans ces filons cristallisés, les minéraux cumulatifs subissent un rééquilibrage partiel avec les liquide interstitiel avant que ce dernier ne soit expulsé lors de la compaction (mettant ainsi un terme à la différenciation). Ce modèle de mise en place signifie qu'un minimum de 150Km3 de magma est nécessaire à la genèse de PX1, une partie de ce volume ayant été émis par le 'Central Volcanic Complex' de Fuerteventura. Les rapports isotopiques radiogéniques mesurés révèlent la contribution de trois pôles mantelliques dans la genèse du magma formant PX1. Le mélange de ces pôles HIMU, DMM et EM1 refléterai l'interaction du point chaud Cana¬rien avec un manteau lithosphérique hétérogène métasomatisé. Les petites variations de ces rapports et des teneurs en éléments traces au sein des faciès pourrait refléter des taux de fusion partielle variable de la source, résultant en un échantillonnage variable du manteau lithosphérique métasomatisé lors de son interaction avec le point chaud. Des datations U/Pb de haute précision (TIMS) sur des cristaux de zircon et de baddeleyite extraits de gabbros de PX1 révèlent que l'initiation de la cristallisation du magma a eu lieu il y a 22.10±0.07 Ma et que l'activité magmatique a duré un minimum de 0.48 à 0.52 Ma. Des âges 40Ar/39Ar obtenus sur amphibole sont de 21.9 ± 0.6 à 21.8 ± 0.3 Ma, identiques aux âges U/Pb. La combinaison de ces méthodes de datations, suggère que le temps maximum nécessaire à PX1 pour se refroidir en dessous de la température de fermeture de l'amphibole est de 0.8Ma. Ceci signifie que la durée de vie de PX1 est de 520 000 à 800 000 ans. La coexistence de cristaux de baddeleyite et de zircon dans un gabbro est attribuée à son interaction avec un fluide riche en C02 relâché par les carbonatites encaissantes lors du métamorphisme de contact généré par la mise en place de PX1 environ 160 000 ans après le début de sa mise en place. Les durées de vie obtenue sont en accord avec le modèle de mise en place suggérant une durée de cristallisation poux chaque filon allant de 1 an à 5 ans. Abstract The Miocene PX1 gabbro-pyroxenite intrusion (Fuerteventura, Canary Islands), is interpreted as the shallow-level feeder-zone (0.15-0.2 GPa and 1100-1120°C), to an ocean island volcano. The particularity of PX1 is that it displays a NNE-SSW trending vertical magmatic banding expressed by alternating gabbro and pyroxeriite sequences. The gabbro and pyroxenite sequences consist of metre-thick differentiation units, which suggest emplacement by pe¬riodic injection of magma pulses as vertical dykes that amalgamated, similarly to a sub-volcanic sheeted dyke com¬plex. Individual dykes underwent internal differentiation following a solidification front (favoured by a significant lateral/horizontal thermal gradient) parallel to the dyke edges. Pyroxenitic layers result from the fractionation and accumulation of clinopyroxene ± olivine ± plagioclase crystals from a mildly alkaline basaltic liquid and are interpre¬ted as truncated differentiation sequences, from which residual melts were extracted by compaction. Clinopyroxene mineral orientation in pyroxenites (evidenced by EBSD and micro X-ray tomography analysis) display a marked pure shear component, supporting this interpretation. Compaction and squeezing of the crystal mush is ascribed to the incoming and inflating magma pulses. The resulting expelled interstitial liquid was likely collected and erupted along with the magma flowing through the newly injected dykes. Gabbro sequences represent crystallised coalesced magma batches, emplaced at lower rates at the end of eruptive cycles, and underwent minor melt extraction as evi¬denced by clinopyroxene orientations that record a simple shear component suggesting syn-magmatic deformation parallel to observed NNF.-SSW trending shear-zones induced by the regional tensional Miocene stress-field. The initiation and geometry of PX1 is controlled by the regional extensional tectonic regime whereas rates and vo¬lumes of magma depend on source-related factors. High injection rates are likely to induce intrusion growth rates larger than could be accommodated by the regional extension. In this case, dyke tip geometry and the inability of magma to circulate through previously emplaced and crystallised dykes could result in an increase of non-lithostatic pressure on previously emplaced mushy dyke walls; generating strong pure-shear compaction and interstitial melt expulsion within the feeder-zone as recorded by the cumulitic pyroxenite bands and anorthositic collection zones. The whole-rock major and trace-element chemistry of PX1 gabbros and pyroxenites is globally homogeneous and controlled by the cumulate nature of the samples (i.e. on the modal proportions of olivine, pyroxene, plagioclase and oxides). However, small variations of whole-rock trace-element contents as well as trace-element contents of clinopyroxene rims suggest that in-situ re-equilibration and crystallisation has occurred. Additionally, the global homogeneity and presence of complex zoning of rare resorbed clinopyroxene crystals suggest that the PX1 feeder- zone overlies a periodically replenished and efficiently mixed magma chamber. Each individual dyke of magma thus originated from a compositionally constant mildly alkaline magma and differentiated independently from the others reaching up to 70% fractionation. Following dyke arrest these are affected by interaction with the trapped interstitial liquid prior to its compaction-linked expulsion (thus stopping the differentiation process). This emplacement model implies that minimum amount of approximately 150 km3 of magma is needed to generate PX1, part of it having been erupted through the overlying Central Volcanic Complex of Fuerteventura. The radiogenic isotope ratios of PX1 samples reveal the contribution on three end-members during magma genesis. This mixing of the H1MU, EMI and DMM end-members could reflect the interaction of the deep-seated Canarian mantle plume with a heterogeneous metasomatic and sepentininsed lithospheric mantle. Additionally, the observed trace-element and isotopic variations within the same fades groups could reflect varying degrees of partial melting of the source region, thus tapping more or less large areas of the metasomatised lithospheric mantle during interac¬tion with the plume. High precision ID-TIMS U/Pb zircon and baddeleyite ages from the PX1 gabbro samples, indicate initiation of magma crystallisation at 22.10 ± 0.07 Ma. The magmatic activity lasted a minimum of 0.48 to 0.52 Ma. 40Ar/39Ar amphibole ages are of 21.9 ± 0.6 to 21.8 ± 0.3, identical within errors to the U/Pb ages. The combination of the 40Ar/39Ar and U/Pb datasets imply that the maximum amount of time PX1 took to cool below amphibole Tc is 0.8 Ma, suggesting PX1 lifetime of 520 000 to 800 000 years. On top of this, the coexistence of baddeleyite and zircon in a single sample is ascribed to the interaction of PX1 with C02-rich carbonatite-derived fluids released from the host-rock carbonatites during contact metamorphism 160 000 years after PX1 initiation. These ages are in agreement with the emplacement model, implying a crystallisation time of less than 1 to 5 years for individual dykes.
Resumo:
The Ivrea and the Strona-Ceneri zones, NW italy and S Switzerland, offer the possibility to study the continental crust of the Southern Alps. Because of its high metamorphic degree and the abundant Permo- Carboniferous mafic intrusions, the Ivrea Zone is classically interpreted an exposed section trough the Permian lower crust. The present work is focused here on metasedimentary slices (septa) intercalated within Permian gabbro (mafic complex). In particular I studied the evolution of accessory phases such as rutile and zircon and the chemistry of the metasediments. The septa build an irregular and discontinuous band that cut obliquely the mafic complex from its deepest part (N) to its roof (S). The chemistry of the metasediments evolves along the band and the chemical evolution can be compared with that observed in the country-rock surrounding the mafic intrusion to the NE and overprinted by a main regional metamorphic event. This suggests that the degree of chemical depletion of the septa was mainly established during the same regional metamorphic event. Moreover it suggests that incorporation of the septa within the gabbro did not modify their original stratigraphie distribution within the crust. It implies that the mafic complex has been emplaced following a dynamic substantially different from the classic model of « gabbro glacier » (Quick et al., 1992; Quick et al., 1994). It is more likely that it has been emplaced by repeated injections of sills at different depths during a protracted period of time. Zircon trace elements and U-Pb ages suggest that regional metamorphism occurred 330-320Ma, the first sills in the deepest part of the Mafic Complex are injected at ~300Ma, the mafic magmas reached higher levels in the crust at 285Ma and the magmatic activity continued locally until 275Ma. The ages of detrital cores in zircons fix the maximal sedimentation age at ~370Ma, this age corresponds therefore with the maximal age of the incorporation of the Ivrea zone within the lower crust. I propose that the Ivrea zone has been accreted to the lower crust during the Hercynian orogeny sensu lato. The analysis of detrital ages suggests that the source terrains for the Ivrea zone and those for the Strona-Ceneri zone have a completely different Palaeozoic history. The systematic analysis of rutile in partially molten metasediments of the Ivrea zone reveals the occurrence of two generations. The two generations are characterized by a different chemistry and textural distribution. A first generation is formed during pro-grade metamorphism in the restitic counterpart. The second generation is formed in the melts during cooling at the same time that part of the first generation re-equilibrate. Re-equilibration of the first generation seems to be spatially controlled by the presence of fluids. Locally the second generation forms overgrowths on the first generation. Considered the different diffusivity of U and Pb in rutile, U heterogeneities have important implication for U-Pb dating of rutile. ID-TIMS and LA-ICPMS dating coupled with a careful textural investigation (SEM) suggest that rutile grains are characterized by multiple path along which Pb diffusion can occur: volume diffusion is an important process, but intragrain and subgrain boundaries provide additional high diffusivity pathways for Pb escape and reduce drastically the effective diffusion length. -- La zone d'Ivrea et la zone de Strona-Ceneri, en Italie nord-occidentale et Suisse méridionale, offrent la possibilité d'étudier la croûte continentale des Alpes du Sud. En raison du haut degré métamorphique et l'abondance d'intrusions mafiques d'âge Permo-Carbonifère [complexe mafique), la zone d'Ivrea est interprétée classiquement comme de la croûte inférieure permienne. Ce travail ce concentre sur des bandes metasédimentaires (septa) incorporées dans les magmas mafiques lors de l'intrusion. Les septa forment une bande irrégulière qui coupe obliquement le complexe mafique du bas (N) vers le haut (S). La chimie des septa évolue du bas vers le haut et l'évolution chimique se rapproche de l'évolution observé dans la roche encaissante l'intrusion affecté par un événement métamorphique régionale. Cette relation suggère que le degré d'appauvrissement chimique des septa a été établit principalement lors de l'événement métamorphique régional. De plus l'incorporation dans les gabbros n'a pas perturbée la distribution stratigraphique originelle des septa. Ces deux observations impliquent que le métamorphisme dans la roche encaissante précède la mise en place du gabbro et que cette dernière ne se fait pas selon le modèle classique (« gabbro glacier » de Quick et al., 1992, 1994), mais se fait plutôt par injections répétées de sills a différentes profondeurs. Les âges U-Pb et les éléments traces des zircons suggèrent que le métamorphisme régionale a eu lieu 330-320Ma, alors que les premiers sills dans la partie profonde du Mafic Complex s'injectent à ~300Ma, le magmatisme mafique atteigne des niveaux supérieurs à 285Ma et continue localement jusqu'à 270Ma. Les âges des coeurs détritiques des zircons permettent de fixer l'âge maximale de sédimentation à ~370Ma ce qui correspond donc à l'âge maximale de l'incorporation de la zone d'Ivrea dans la croûte inférieur. L'analyse systématique des rutiles, nous a permit de montrer l'existence de plusieurs générations qui ont une répartition texturale et une chimie différente. Une génération se forme lors de l'événement UHT dans les restites, une autre génération se forme dans les liquides lors du refroidissement, au même temps qu'une partie de la première génération se rééquilibre au niveau du Zr. Localement la deuxième génération peut former des surcroissances autour de la première génération. Dans ces cas, des fortes différences en uranium entre les deux générations ont des importantes implications pour la datation U-Pb sur rutile. Classiquement les ratios Pb/U dans le rutile sont interprétés comme indiquant l'âges du refroidissement du minéral sous une température à la quelle la diffusion du Pb dans le minéral n'est plus détectable et la diffusion à plus hautes températures est assumée se faire par «volume diffusion» dans le grain (Mezger et al., 1989). Par des datations ID-TIMS (sur grain entier) et LA-ICPMS (in-situ) et une analyse texturale (MEB) approfondie nous montrons que cette supposition est trop simpliste et que le rutile est repartie en sous-domaines. Chacun de ces domaines a ça propre longueur ou chemin de diffusion spécifique. Nous proposons donc une nouvelle approche plus cohérente pour l'interprétation des âges U-Pb sur rutile.
Resumo:
Phengites from the eclogite and blueschist-facies sequences of the Cycladic island of Syros (Greece) have been dated by the in situ UV-laser ablation Ar-40/Ar-39 method. A massive, phengite-rich eclogite and an omphacite-rich metagabbro were investigated. The phengites are eubedral and coarse-grained (several 100 mum), strain-free and exhibit no evidence for late brittle deformation or recrystallization. Apparent ages in these samples range from 43 to 50 Ma for the phengite-rich eclogite and 42 to 52 Ma for the ompbacitic metagabbro. This large spread of ages is visible at all scales-within individual grains as well as in domains of several 100 mum and across the entire sample (ca. 2 cm). Such variations have been traditionally attributed to metamorphic cooling or the incorporation of excess argon. However, the textural equilibrium between the phengites and other high pressure phases and the subtle compositional variations within the phengites, especially the preservation of growth textures, alternatively suggest that the observed range in ages may reflect variations of radiogenic argon acquired during phengite formation and subsequent growth, thus dating a discrete event on the prograde path. This implies that the oldest phengite 40Ar/39Ar ages provide the best estimate of a minimum crystallization age, which is in agreement with recently reported U-Pb and Lu-Hf geochronological data. Our results are consistent with available stable isotope data and further suggest that, under fluid-restricted conditions, both stable and radiogenic isotopic systems can survive without significant isotopic exchange during subduction and exhumation from eclogite-facies P-T conditions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Magmatic rocks from the pre-Mesozoic basements of the Sambuco and Maggia nappes have been dated by U-Pb zircon ages with the LA-ICPMS technique. Several magmatic events have been identified in the Sambuco nappe. The mafic banded calc-alkaline suite of Scheggia is dated at 540 Ma, an age comparable to that of mafic rocks in the Austroalpine Silvretta nappe. The Sasso Nero peraluminous augengneiss has an age of 480-470 Ma, like many other ``older orthogneisses'' in Alpine basement units. It hosts a large proportion of inherited zircons, which were dated around 630 Ma, a Panafrican age indicating the Gondwanan affiliation of the Sambuco basement. The calc-alkaline Matorello pluton yielded ages around 300 Ma, similar to numerous Late Carboniferous intrusions in other basement units of the Lower Penninic (Monte Leone, Antigorio, Verampio) and Helvetic domains (Gotthard and other External Crystalline Massifs). Associated lamprophyric dykes are slightly younger (300-290 Ma), like similar dykes sampled in gneiss blocks included in the sedimentary cover of the underlying Antigorio nappe (290-285 Ma). The Cocco granodiorite and Ruscada leucogranite, both intruding the basement of the neighbouring Maggia nappe, yielded ages of ca. 300-310 Ma, identical within errors to the age of the Matorello pluton. They are significantly older than former age determinations. This age coincidence, coupled with remarkable petrologic similarities between the Cocco and Matorello granodiorites, strongly suggests paleogeographic proximity of the Sambuco and Maggia nappes in Late Carboniferous times. In recent publications these two nappes have been interpreted as belonging to distinct Mesozoic paleogeographic domains: ``European'' for Sambuco and ``Brian double dagger onnais'' for Maggia, separated by the ``Valais'' oceanic basin. In this case, the similarity of the Matorello and Cocco intrusions would demonstrate the absence of any significant transcurrent movement between these two continental domains. Alternatively, according to a more traditional view, Sambuco and Maggia might belong to a single large Alpine tectonic unit.
Resumo:
Résumé Scientific:Pétrologie et Géochimie du Complexe Plutonique de Chaltén et les conséquences pour l'évolution magmatique et tectonique du Andes du Sud (Patagonia) pendant le MiocèneLe sujet de cette thèse est le Complexe Plutonique de Chaltén (CHPC), situé à la frontière entre le Chili et l'Argentine, en Patagonie (49°15'S). Ce complexe s'est mis en place au début du Miocène, dans un contexte de changements tectoniques importants. La géométrie et la vitesse de migration des plaques en Patagonie a été modifiée suite l'ouverture de la plaque Farallon il y a 25Ma (Pardo-Casas and Molnar 1987) et la subduction de la ride active du Chili sous la plaque sud-américaine il y a 14Ma (Cande and Leslie 1986). Les effets de cette reconfiguration tectonique sur la morphologie et le magmatisme de la plaque supérieure sont encore sujets à discussion. Dans ce contexte, un groupe d'intrusions miocènes - telle que le CHPC - est particulièrement intriguant, car en position transitionnelle entre le batholithe patagonien et l'arc volcanique cénozoïque et récent à l'ouest, et les laves de plateau de Patagonie à l'est (Fig. 1). A cause de leur position tectonique transitoire, ces plutons isolés hors du batholithe représentent un endroit clé pour comprendre les interactions entre la tectonique à large échelle et le magmatisme en Patagonie. Ici, je présente de nouvelles données de terrain, petrologiques, géochimiques et géochronologiques dans le but de caractériser la nature du CHPC, qui était largement inconnu avant cette étude, dans le but de tester l'hypothèse de migration de l'arc et erosion par subduction.Les résultats de l'investigation géochimique (chapitre 2) montrent que le CHPC n'est qu'un exemple parmi les plutons isolés d'arrière arc ave une composition calco-alcaline caractéristique, c-à-d une signature d'arc. La plupart de ces plutons isolés ont une composition alcaline. Le CHPC, contrairement, a une signature calco-alcaline avec Κ intermédiaire, tel que le batholithe patagonien et la plupart des roches volcaniques quaternaires liées à l'arc le long des Andes.De nouvelles données géochronologiques U-Pb de haute précision sur des zircons, acquis par TIMS, sur le CHPC donnent des âges entre 17.0 et 16.4Ma. Les âges absolus sont en accord avec la séquence intrusive déduite des relations de terrain (chapitre 1). Ces données sont les premières contraintes d'âge U-Pb sur le CHPC. Elles montrent clairement que l'histoire magmatique du CHPC n'a pas de lien direct avec la subduction de la ride à cette latitude (Cande and Leslie 1986), car le complexe est au moins 6Ma plus ancien.Une comparaison en profondeur avec les autres intrusions d'âge Miocène en Patagonie révèlent - pour la première fois - une évolution temporelle intéressante. Il y a une tendance E-W distincte au magmatisme calco-alcalin entre 20-16Ma avec une diminution de l'âge vers l'est - le CHPC est l'expression la plus orientale de cette tendance. Je suggère que la relation espace-temps reflète une migration vers l'est (vers le continent) de l'arc magmatique. Je propose que le facteur principal contrôlant cette migration est la subduction rapide suite à la reconfiguration de la vitesse des plaques tectoniques après l'ouverture la plaque Farallon (à ~26Ma) qui résulterait en une déformation importante ainsi qu'à des taux élevés d'érosion dans la fosse de subduction.Les rapports d'isotopes radiogéniques (Pb, Sr, Nd) élevés, une signature 6018 basse et un rapport Th/La élevé sont des paramètres distinctifs pour les roches mafiques du CHPC. Le modèle isotopique présenté (chapitre 2) suggère que cette signature reflète une contamination de la source, dans le coin de manteau, plutôt qu'une contamination crustale. La signature des éléments en trace du CHPC indiquent que le coin de manteau a été contaminé par des composés terrigènes, le plus vraisemblablement par des sédiments paléozoïques.Les travaux de terrain, la pétrographie et la géothermobarométrie ont été utilisés dans le but de comprendre l'histoire interne du CHPC (chapitre 3). Ces données suggèrent deux niveaux distincts de cristallisation : l'un dans la croûte moyenne (6 à 4.5kbar) et l'autre à un niveau peu profond (3.5 à 2kbar). La modélisation isotopique AFC de la contamination crustale indique des taux variables d'assimilation, qui ne sont pas corrélés avec le degré de différenciation. Cela suggère que différents volumes de magma se sont différenciés en profondeur, de façon indépendante. Cela implique que le CHPC se serait formés en plusieurs puises de magmas provenant d'au moins trois sources différentes. Les textures des granodiorites et des granites indiquent des teneurs élevées en cristaux avant la mise en place et, par conséquent, des températures d'emplacement faibles. Les observations de terrain montrent que les roches mafiques sont déformées, alors que ce n'est pas le cas pour les granodiorites et granites (plus jeunes). La déformation des roches mafiques est encore sujet de recherche, afin de savoir si elle est liée à la déformation régionale en régime compressif ou à l'emplacement lui-même. Cependant, la mise en place de grand volume de magma felsique riche en cristaux suggère un régime d'extension.Scientific Abstract:Petrology and chemistry of the Chaltén Plutonic Complex and implications on the magmatic and tectonic evolution of the Southernmost Andes (Patagonia) during the MioceneThe subject of this thesis is the Chaltén Plutonic Complex (CHPC) located at the frontier between Chile and Argentina in Patagonia (at 49° 15 'Southern latitude). This complex intruded during early Miocene in a context of major tectonics changes. The plate geometry of Patagonia has been modified by changes in the plate motions after the break up of the Farallôn plate at 25Ma (Pardo-Casas and Molnar 1987) and by the subduction of the Chile spreading Ridge beneath South-America at 14 Ma (Cande and Leslie 1986). The effects of this tectonic setting on the morphology and the magmatism of the overriding plate are a matter of on-going discussion. Particularly intriguing in this context is a group of isolated Miocene intrusions - like the CHPC - which are located in a transitional position between the Patagonian Batholith and the Cenozoic and Recent volcanic arc in the West, and the Patagonian plateau lavas in the East (Fig. 1). Due to their transient tectonic position these isolated plutons outside the batholith represent a key to understanding the interaction between global-scale tectonics and magmatism in Patagonia. Here, I present new field, penological, geochemical and geochronological data to characterize the nature of the CHPC, which was largely unknown before this study, in order to test the hypothesis of time- transgressive magmatism.The results of the geochemical investigation (Chapter 2) show that the CHPC is only one among these isolated back-arc plutons with a characteristic calc-alkaline composition, i.e. arc signature. Most of these isolated intrusives have an alkaline character. The CHPC, in contrast, has a medium Κ calc-alkaline signature, like the Patagonian batholith and most of the Quaternary arc-related volcanic rocks along the Andes.New high precision TIMS U-Pb zircon dating of the CHPC yield ages between 17.0 to 16.4 Ma. The absolute ages support the sequence of intrusion relations established in the field (Chapter 1). These data are the first U-Pb age constraints on the CHPC, and clearly show that the magmatic history of CHPC has no direct link to the subduction of the ridge, since this complex is at least 6 Ma older than the time of collision of the Chile ridge at this latitude (Cande and Leslie 1986).An in-depth comparison with other intrusion of Miocene age in Patagonia reveals - for the first time - an interesting temporal pattern. There is a distinct E-W trend of calc-alkaline magmatism between 20-16 Ma with the younging of ages in the East - the CHPC is the easternmost expression of this trend. I suggest that this time-space relation reflects an eastward (landward) migration of the magmatic arc. I propose that main factor controlling this migration is the fast rates of subduction after the major reconfigurations of the plate tectonic motions after the break up of the Farallôn Plate (at -26 ) resulting in strong deformation and high rates of subduction erosion.High radiogenic isotope ratios (Pb, Sr, Nd) ratios, low 5018 signature and high Th/La ratios in mafic rocks are distinctive features of the CHPC. The presented isotopic models (Chapter 2) suggest that this signature reflects source contamination of the mantle wedge rather than crustal contamination. The trace element signature of the CHPC indicates that the mantle wedge was contaminated with a terrigenous component, most likely from Paleozoic sediments.Fieldwork, petrography and geothermobarometry were used to further unravel the internal history of the CHPC (Chapter 3). These data suggest two main levels of crystallization: one a mid crustal levels (6 to 4.5 kbar) and other a shallow level (3.5 to 2 kbar). Isotopic AFC modeling of crustal contamination indicate variable rates of assimilation, which are not correlated with the degree of differentiation. This suggests that different batches of magma differentiate independently at depths. This implies that the CHPC would have formed by several pulses of magmas from at least 3 different sources. Textures of granodiorites and granites indicate a high content of crystals previous to the emplacement and consequently low emplacement temperatures. Field observations show that the mafic rocks are deformed, whereas the (younger) granodiorites and granites are not. It is still subject of investigation whether the deformation of the mafic rocks is related to regional deformation during a compressional regime or to the emplacement it self. However, the emplacement of huge amount of crystal rich felsic magmas suggests an extensional regime.Résumé Grand PublicPétrologie et Géochimie du Complexe Plutonique de Chaltén et les conséquences pour l'évolution magmatique et tectonique du Andes du Sud (Patagonia) pendant le MiocèneLe Complexe Plutonique de Chaltén (CHPC) est un massif montagneux situé à 49°S à la frontière entre le Chili et l'Argentine, en Patagonie (région la plus au sud de l'Amérique du Sud). Il est composé de montagnes qui peuvent atteindre plus de 3000 mètres d'altitude, telles que le Cerro Fitz Roy (3400m) et le Cerro Torre (3100m). Ces montagnes sont composées de roches plutoniques, c.-à-d. des magmas qui se sont refroidis et ont cristallisés sous la surface terrestre.La composition chimique de ces roches montre que les magmas, qui ont formé ce complexe plutonique, font partie d'un volcanisme d'arc. Celui-ci se forme lorsqu'une plaque océanique plonge sous une plaque continentale. Les géologues appellent ce processus « subduction ». Dans un tel scénario, le manteau terrestre, qui se fait prendre entre ces deux plaques, fond pour former ainsi du magma. Ce magma remonte à travers la plaque continentale vers la surface. Si celui-ci atteint la surface, il forme les roches volcaniques, comme par exemple des laves. S'il n'atteint pas la surface, le magma se refroidit pour former finalement les roches plutoniques.Le long de la marge ouest d'Amérique du Sud, la plaque Nazca - qui se situe au sud-est de la plaque océanique pacifique - passe en dessous de la plaque d'Amérique du Sud. La bordure ouest du sud de la plaque sud-américaine a également été affectée par d'autres processus tectoniques, tels que des changements dramatiques dans les déplacements de plaques (il y a 25Ma) et la collision de la ride du Chili (depuis 15 Ma jusqu'à aujourd'hui). Ces caractéristiques tectoniques et magmatiques font de cette région un haut lieu pour les géologues. La plaque Nazca, s'est formée suite à l'ouverture d'une plaque océanique plus ancienne, il y a 25Ma. Cette ouverture est liée aux vitesses de subduction les plus rapides jamais connues. La ride du Chili est l'endroit où le sol de l'Océan Pacifique s'ouvre, formant deux plaques océaniques : les plaques Nazca et Antarctique. La ride du Chili subducte sous la plaque sud-américaine depuis 15Ma, en association avec la formation de grands volumes de magma ainsi que des changements morphologiques importants. La question de savoir lequel de ces changements tectoniques globaux affecte la géologie et la géographie de Patagonie a été, et est encore, discutée pendant de nombreuses années. De nombreux chercheurs suggèrent que la plupart des caractéristiques morphologiques et magmatiques en Patagonie sont liés à la subduction de la ride du Chili, mais cette suggestion est encore débattue comme le montre notre étude.Le batholithe de Patagonie du sud (SPB) est un énorme massif composé de roches plutoniques et il s'étend tout au long de la côte ouest de Patagonie (au sud de 47°S). Ces roches correspondent certainement aux racines d'un ancien arc volcanique, qui a été soulevé et érodé. Le CHPC, ainsi que d'autres petites intrusions dans la région, se situe dans une position exotique, à 100km à l'est du SPB. Certains chercheurs suggèrent que ces intrusions pourraient être liées à la subduction de la ride du Chili.Afin de débattre de cette problématique, nous avons utilisé différentes méthodes géochronologiques pour déterminer l'âge du CHPC et le comparer (a) à l'âge des roches intrusives similaires du SPB et (b) à l'âge de la collision de la ride du Chili. Dans ce travail, nous prouvons que le CHPC s'est formé au moins 7Ma avant la collision avec la ride du Chili. Sur la base des âges du CHPC et de la composition chimique de ses roches et minéraux, nous proposons que le CHPC fait partie d'un arc volcanique ancien. La migration de l'arc volcanique plus profondément dans le continent résulte de la grande vitesse de subduction entre 25 et lOMa. Des caractéristiques évidentes pour un tel processus - telles qu'une déformation importante et une vitesse d'érosion élevée - peuvent être rencontrées tout au long de la bordure ouest de l'Amérique du sud.
Resumo:
The determination of radiolarite ages of supraophiolitic rocks date the expansion age of oceanic crust. Radiolarites from the Gets nappe, a decollement cover nappe, provide the means of dating selected localities of outcropping oceanic crust based on their radiolarian faunas. Some studied samples from the ophiolitic melange (Perri re series) have a very well preserved and highly diverse radiolarian fauna of biochronological significance. The age of the radiolarites is established by correlation with the biozonation of Baumgartner et al. (1995b), which indicates a Bathonian age for the oldest radiolarian assemblages. Accordingly, these radiolarites represent remains of the oldest sediments recorded after the opening of the Piemont-Ligurian Ocean. This age is in agreement with those recently established by isotopic methods (166 +/- 1 Ma U-Pb and 165.9 +/- 2.2 Ma Ar-40/Ar-39) in the associated gabbros from the ophiolitic melange. The isotopic age and paleontological results are important because they represent the oldest dating of the oceanic crust of the Piemont-Ligurian Ocean, proving a Late Bajocian-Early Bathonian age for the oceanization in the western Tethys. The systematic part presents a complete Bathonian radiolarian assemblage from two of the best preserved samples; the illustrated assemblage contains 180 species attributed to 66 genera (44 nassellarians, 22 spumellarians and 1 entactinarian). Twenty new species and three new genera (Helvetocapsa, Plicaforacapsa and Theocapsomella) are formally described.
Resumo:
Résumé Le « terrane » d'Anarak-Jandak occupe une position géologique clé au nord-ouest du Microcontinent Centre-East Iranien (CE1M), connecté avec le Bloc du Grand Kavir et la ceinture métamorphique de Sanandaj-Sirjan. Nous discutons ici l'origine de ces différentes unités, reliées jusqu'à présent à des épisodes orogéniques d'âge Précambrien à Paléozoïque inférieur, pour conclure finalement de leur affinité paléotéthysienne. Leur histoire commence par un épisode de rifting d'âge Ordovicien supérieur-Dévonien inférieur, pour se terminer au Trias par la collision des blocs Cimmériens dérivé du Gondwana avec le Bloc du Turan d'affinité asiatique (événement Eocimmérien). La plus importante unité métamorphique affleurant au sud-ouest de la région de Jandak-Anarak-Kaboudan est une épaisse séquence silicoclastique à grains fins contenant des blocs ophiolitiques (marginal-sea-type), et des associations basalte-gabbro à signatures géochimiques de type supra-subduction. Dans la région de Nakhlak, nous avons daté ces gabbros par la méthode U-Pb à 387f0.11 Ma ; les roches métamorphiques pélitiques ont donné des âges de refroidissement Ar-Ar pour la muscovite de 320 à 333 Ma. Ce complexe d'accrétion "varisque" a été métamorphisé dans le faciès schiste vert-amphibolite au cours de l'accrétion de la ceinture granitique d'Airekan, d'âge Cambrien inférieur (549±15 Ma par la méthode U/Pb), qui affleure aujourd'hui à l'extrémité nord-ouest du terrane d'Anarak-Jandak . La subduction vers le nord de l'océan Paléotéthys depuis le Paléazoïque supérieur jusqu'au Trias, a permis l'accumulation de grandes quantités de matériel océanique dans la zone de subduction. Par exemple, une succession de guyots (Anarak, Kaboudan, et Meraji Seamounts) et de hauts sous-marins, entrés en collision oblique avec le prisme d'accrétion, est à l'origine d'un léger métamorphisme de type HP qui affecte ces séries {âges Ar-Ar de 280 à 230 Ma). De plus, le magmatisme bimodal de Chah Gorbeh est caractérisé d'une part par des roches de type trondjémite-gabbros (262 Ma), d'autre part par des laves en coussin de type basaltes alcalins-rhyolites; ces roches magmatiques ont recoupé l'ophiolite d'Anarak lors de la mise en place de cette dernière dans la fosse interne de subduction. Quant au prisme d'accrétion de Doshakh, d'âge essentiellement Permien supérieur, i1 a été accrété le long de la marge continentale et métamorphisé dans le faciès schiste vert. La fermeture de la Paléotéthys s'enregistre finalement par la sédimentation dans le bassin d'avant pays du flysch de Bayazeh, d'âge probable Triasique. Le matériel issu de l'arc magmatique de la Paléotéthys est très bien préservé dans les dépôts infra-arc Dévonien supérieur-Carbonifère de Godar-e-Siah, ainsi que dans la succession d'avant-arc de Nakhlak. Pendant l'intervalle Paléozoïque supérieur-Trias, la région de Jandak a été soumise à un régime extensif de type bassin d'arrière-arc, dont un témoin pourrait être la ceinture ophiolitique d'Arusan, elle-même comparable aux écailles ophiolitiques d'Aghdarband au nord-est de l'Iran. Cet ensemble métamorphique est recoupé par des granites d'arc à collisionnel datés à 215±15 Ma. Dans la région de Yazd, témoin de la marge passive Cimmérienne, la sédimentation syn-rift Silurienne à Dévonienne inférieure a été interrompue pendant l'intervalle Trias moyen-Trias supérieur; il en a été de même pour les dépôts de plate-forme Paléozoïque supérieur. L'érosion, qui dans ce dernier cas a atteint le Permien, pourrait être liée au bombement flexural de la marge passive. La collision finale n'a pas induit de déformations trop importantes, et se caractérise par la mise en place de nappes sur la marge passive. Cet événement est scellé par des dépôts molassique du Lias. D'un point de vue régional, la zone s'étendant actuellement de la Mer Noire au Pamir a été soumise à six épisodes d'extension-compression du Jurassique inférieur (début du l'ouverture en position arrière-arc de la Néotéthys) à l'Eocène moyen. Par exemple, le terrane d'AnarakJandak, probablement situé entre le Kopeh Dagh et la plate-forme nord Afghane, s'est complètement détaché de sa patrie d'origine au début du Crétacé supérieur. Des preuves de cet événement se retrouvent dans les séries de plate-forme de Khur (préservation de séries syn-rift puis de marge passive). Les ophiolites de Nain et de Sabzevar sont de plus interprétée comme un témoin de l'existence de ce bassin d'arrière-arc. Dans l'intervalle Eocène-Oligocène, l'indentation par la plaque indienne de l'Eurasie a été contemporaine de la rotation horaire de fragments de l'ancien microcontinent Iranien et de la formation du CEIM. Cette rotation est responsable du transport du terrane d'Anarak-Jandak vers sa position actuelle en Iran Central, et de la dislocation de Terranes de moindre importance, comme le bloc de Posht-e Badam. Depuis le Miocène supérieur, et à la suite de la collision entre l'Arabie et l'Iran, le ternane d'Anarak-Jandak a subi des déformations liées à l'activité d'une zone de cisaillement dextre parallèle à la suture du Zagros, à l'arrière de l'arc magmatique d'Uromieh-Dokhtar. Résumé large public Le Microcontinent Centre-Est Iranien occupe une position géologique clé au centre de l'Iran. Les différentes unités qui le composent, reliées jusqu'à présent à des épisodes orogéniques d'âge Précambrien à Paléozoïque inférieur, sont maintenant rajeunies et liés à la fermeture de l'océean Paléotéthys. Leur histoire commence par un épisode de rifting d'âge Ordovicien supérieur à Dévonien inférieur, pour se terminer au Trias par la collision des- blocs Cimmériens, dérivés du Gondwana, avec le Bloc du Turan d'affinité asiatique. Dans la marge active asiatique de la Paléotéthys, nous avons daté les restes d'un océan marginal à 387±0.11 Ma. Ce complexe d'accrétion a été métamorphisé au cours de la réaccrétion de la ceinture granitique d'Airekan, d'âge Cambrien inférieur (549±15 Ma), qui affleure aujourd'hui à l'extrémité nord-ouest du « terrane » d'Anarak-Jandak correspondant à la plus grande partie de la région étudiée. Le matériel issu de l'arc magmatique de la Paléotéthys est très bien préservé et daté du Dévonien supérieur-Carbonifère. Pendant l'intervalle Paléozoïque supérieur-Trias, la région a été soumise à un régime extensif de type bassin d'arrière-arc, dont un témoin pourrait être la ceinture ophiolitique d'Arusan, comparable aux écailles ophiolitiques d'Aghdarband au nord-est de l'Iran. Cet ensemble métamorphique est recoupé par des granites datés à 215±15 Ma. La subduction vers le nord de l'océan Paléotéthys depuis le Paléozoïque supérieur jusqu'au Trias, a permis l'accumulation de grandes quantités de matériel océanique dans la zone de subduction. Par exemple, une succession de volcans sous-marins, entrés en collision avec le prisme d'accrétion, est à l'origine d'un léger métamorphisme de type HP qui affecte ces séries (280 à 230 Ma). Quant au prisme d'accrétion de Doshakh, d'âge essentiellement Permien supérieur, il a été mis en place le long de la marge continentale et métamorphisé dans le faciès schiste vert. La fermeture de la Paléotéthys s'enregistre finalement par la sédimentation dans le bassin d'avant pays du flysch de Bayazeh, d'âge Triasique. Dans la région de Yazd, on trouve les témoins de la marge passive Cimmérienne, la sédimentation syn-rift Silurienne à Dévonienne inférieure a été interrompue pendant l'intervalle Trias moyen-Trias supérieur, marqué par la flexuration de la marge passive lorsqu'elle rentra en collision avec la marge active asiatique. Cet événement est scellé par des dépôts molassique à charbon du Lias. Le «terrane» d'Anarak-Jandak, probablement situé à l'origine entre le Kopeh Dagh et la plate-forme nord Afghane, s'est complètement détaché de cette région au début du Crétacé supérieur lors de l'ouverture d'un bassin d'arrière-arc, engendré, cette fois, par la subduction de l'océan Néotéthys situé au sud des blocs cimmériens. Des preuves de cet événement se retrouvent dans les séries syn-rift, puis de marge passive de Khour. Les ophiolites de Nain et de Sabzevar sont interprétées comme un témoin de l'existence de ce bassin d'arrière-arc. Dans l'intervalle Eocène-Oligocène, l'indentation de l'Eurasie par la plaque indienne a été contemporaine de la rotation horaire de fragments de l'ancien microcontinent centre-Iranien. Cette rotation de près de 90° est responsable du transport du « terrane » d'Anarak-Jandak vers sa position actuelle. Abstract The Anarak-Jandaq terrane occupies a strategic geological situation at the north-western part of the Central-East Iranian Microcontinent (CEIM) and in connection with the Great Kavir Block and Sanandaj-Sirjan metamorphic belt. Our recent findings redefine the origin of these mentioned areas so far attributed to the Precambrian-Early Palaeozoic orogenic episodes, to be now directly related to the tectonic evolution of the Palaeo-Tethys Ocean, commenced by Late Ordovician-Early Devonian rifting events and terminated in the Triassic by the Eocimmerian tectonic event due to the collision of the Cimmerian blocks with the Asiatic Turan block. The most distributed metamorphic unit that is exposed from the south-west of Jandaq to the Anarak and Kaboudan areas is a thick and fine grain siliciclastic sequence accompanied by marginal-sea-basin ophiolitic blocks including basalt-gabbro association with supra-subduction-geochemical signature. These gabbros in the Nakhlak area were dated by U/Pb method at 387.6 ± 0.11 Ma and the metamorphic pelitic rocks yielded a range of 320 to 333 Ma muscovite-cooling ages based on 40Ar/39 Ar method. This "Variscan" accretionary complex was metamorphosed in greenschist-amphibolite facies during accretion to the Lower Cambrian Airekan granitic belt (549 ± 15 Ma by U/Pb method) that crops out at the northwestern edge of the Anarak-Jandaq terrane. Continued northward subduction of the Palaeo-Tethys Ocean during the entire Late Palaeozoic-Middle Triassic brought huge amount of oceanic material to the subduction zone. One chain of Carboniferous-Triassic oceanic rises and seamounts (the Anarak, Kaboudan, and Meraji Seamounts) obliquely collided with the accretionary wedge and created a mild HP metamorphic event (280-230 Ma based on 40Ar/39Ar results). Bimodal magmatism of the Chah Gorbeh area is characterized by a 262 Ma trondjemite-gabbro as well as pillow alkalibasalts-rhyolites which intruded the Anarak ophiolite when it was being emplaced within the inner-wall trench. The mainly Late Permian-Triassic Doshakh wedge was accreted along the continent and metamorphosed under lower greenschist facies and the probable Triassic Bayazeh flysch filled the foreland basin during the final closure. The Palaeo-Tethys magmatic arc products have been well preserved in the Late Devonian-Carboniferous Godar-e-Siah intra-arc deposits and the Triassic Nakhlak fore-arc succession. During the Late Palaeozoic-Triassic times, the Jandaq area has been affected by back-arc extension and probably the Arusan ophiolitic belt is the remnant of this narrow basin comparable to the Aqdarband ophiolitic remnant in north-east Iran. This metamorphic belt was intruded by 215 ± 15 Ma arc to collisional granites. In the passive margin of the Cimmerian block, on the Yazd region, the Silurian-Early Devonian syn-rift succession as well as the nearly continuous Upper Palaeozoic platform-type deposition was interrupted during the Middle to Late Triassic time, local erosion down to Devonian levels may be related to flexural bulge erosion. The collision event was not so strong to generate intensive deformation but was accompanied by some nappe thrusting onto the passive margin. It is finally unconformably covered by Liassic continental molassic deposits. Related to the onset of Neo-Tethyan back-arc opening in Early Jurassic to Mid-Eocene times, six periods of extensional-compressional events have differently influenced an elongated area, extending from the West Black Sea to Pamir. The Anarak-Jandaq terrane which was situated somewhere in this affected area, probably between the Kopeh Dagh and North Afghan platform, was completely detached from its source at the beginning of the Late Cretaceous