159 resultados para Tunnel junctions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Simplon tunnel is a railway connection trough the Alps between Brig (Switzerland) and Iselle (Italy). Constructed at the beginning of the last century, it consists of two parallel, interconnected tunnels of 19.8 km each. Due to geothermal conditions, its temperature of 29°C is seasonally invariable. Stories about blind mice induced us to sample small mammals in the central part of the tunnel. We used 30 Longworth traps, set in 6 groups of 5 traps. After a prebaiting period of 2 weeks, the traps were opened during one night. We captured 10 Mus domesticus Rutty, 1772. A karyological analysis showed that they had the standard diploid number of 2n = 40, as mice from Brig. Mice from the Val d'Ossola (Italian side of the tunnel) had a karyotype of 2n = 24 with two specific Robertsonian fusion, Rb(5.8) and Rb(7.15). This "Domodossola race" belongs to the Lago Maggiore sub-groupe. As a conclusion, the tunnel colonisation took place from the north. With a density of about 5 - 10 mice per km, a rough estimate of the total tunnel population is about 200 - 400 mice. The few pick-nick left-overs from workers active in the tunnel cannot sustain such a population. It is concluded that the mice, as well as the regularly encountered Gryllus domesticus, are living from human faeces, dropped from the water closets of the trains. Low food resources, lack of predators and perhaps lack of accidents imply a density dependent population control, coupled with a low reproduction rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Accurate and reproducible tibial tunnel placement minimizing the risk of neurovascular damage is a crucial condition for successful arthroscopic reconstruction of the posterior cruciate ligament (PCL). This step is commonly performed under fluoroscopic control. Hypothesis: Performing the tibial tunnel under exclusive arthroscopic control allows accurate and reliable tunnel placement according to recommendations in the literature. Materials and Methods: Between February 2007 and December 2009, 108 arthroscopic single bundle PCL reconstructions in tibial tunnel technique were performed. The routine postoperative radiographs were screened according to previously defined quality criterions. After critical analysis, the radiographs of 48 patients (48 knees) were enrolled in the study. 10 patients had simultaneous ACL reconstruction and 7 had PCL revision surgery. The tibial tunnel was placed under direct arthroscopic control through a posteromedial portal using a standard tibial aming device. Key anatomical landmarks were the exposed tibial insertion of the PCL and the posterior horn of the medial meniscus. First, the centre of the posterior tibial tunnel outlet on the a-p view was determined by digital analysis of the postoperative radiographes. Its distance to the medial tibial spine was measured parallel to the tibia plateau. The mediolateral position was expressed by the ratio between the distance of the tunnel outlet to the medial border and the total width of the tibial plateau. On the lateral view the vertical tunnel position was measured perpendicularly to a tangent of the medial tibial plateau. All measurement were repeated at least twice and carried out by two examiners. Results: The mean mediolateral tunnel position was 49.3 ± 4.6% (ratio), 6.7 ± 3.6 mm lateral to the medial tibial spine. On the lateral view the tunnel centre was 10.1 ± 4.5 mm distal to the bony surface of the medial tibial plateau. Neurovascular damage was observed in none of our patients. Conclusion: The results of this radiological study confirm that exclusive arthroscopic control for tibial tunnel placement in PCL reconstruction yields reproducible and accurate results according to the literature. Our technique avoids radiation, facilitates the operation room setting and enables the surgeon to visualize the anatomic key landmarks for tibial tunnel placement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Wnt -Wingless (Wg) in Drosophila- signaling is an evolutionary conserved, fundamental signal transduction pathway in animals, having a crucial role in early developmental processes. In the adult animal the Wnt cascade is mainly shut off; aberrant activation leads to cancer. One physiological exception in the adult animal is the activation of Wnt signaling in the nervous system. In the present work, we investigated Wg signaling in the Drosophila neuromuscular junctions (NMJs). The fly NMJs closely resemble the glutamatergic synapses in the mammalian central nervous system and serves as a model system to investigate the mechanism of synapse formation and stability. We demonstrate that the trimeric G-protein Go has a fundamental role in the presynaptic cell in the NMJ. It is implicated in the presynaptic Wg pathway, acting downstream of the ligand Wg and its receptor Frizzled2 (Fz2). Furthermore, we prove that the presynaptic Wg-Fz2-Gαo pathway is essential for correct NMJ formation. The neuronal protein Ankyrin2 (Ank2) localizes to the NMJ and has so far been considered to be a static player in NMJ formation, linking the plasma membrane to the cytoskeleton. We identify Ank2 as a direct target of Gαo. The physical and genetic interaction of Gαo with Ank2 represents a novel branch of the presynaptic Wg pathway, regulating the microtubule cytoskeleton in NMJ formation, jointly with the previously established Futsch-dependent branch, which controls microtubule stability downstream of the kinase Sgg (the homolog of GSK3ß). We moreover demonstrate that the Gαo-Ankyrin interaction to regulate the cytoskeleton is conserved in mammalian neuronal cells. Our findings therefore provide a novel, universally valid regulation of the cytoskeleton in the nervous system. Aberrant inactivation of the neuronal Wnt pathway is believed to be involved in the pathogenesis of the Aß peptide in Alzheimer's disease (AD). We modeled AD in Drosophila by expressing Aß42 in the nervous system and in the eye. Neuronal expression drastically shortens the life span of the flies. We prove that this effect depends on the expression specifically in glutamatergic neurons. However, Aß42 does not induce any morphological changes in the NMJ; therefore this synapse is not suitable to study the mechanism of Aß42 induced neurotoxicity. We furthermore demonstrate that genetic activation of the Wnt pathway does not rescue the Aß42 induced phenotypes - in opposition to the dominating view in the field. These results advice caution when interpreting data on the potential interaction of Wnt signaling and AD in other models. -- La voie de signalisation Wnt (Wingless (Wg) chez la drosophile) est conservée dans l'évolution et fondamentale pour le développement des animaux. Cette signalisation est normalement inactive chez l'animal adulte; une activation anormale peut provoquer le cancer. Or, ceci n'est pas le cas dans le système nerveux des adultes. La présente thèse avait pour but d'analyser le rôle de la voie de signalisation Wingless dans la plaque motrice de Drosophila melanogaster. En effet, cette plaque ressemble fortement aux synapses glutaminergiques du système nerveux central des mammifères et procure ainsi un bon modèle pour l'étude des mécanismes impliqués dans la formation et la stabilisation des synapses. Nos résultats montrent que la protéine trimérique Go joue un rôle fondamental dans la fonction de la cellule présynaptique de la plaque motrice. Go est en effet impliqué dans la voie de signalisation Wg, opérant en aval du ligand Wg et de son récepteur Frizzled2. Nous avons pu démontrer que cette voie de signalisation Wg-Fz2-Gαo est essentielle pour le bon développement et le fonctionnement de la plaque motrice. Fait intéressant, nous avons montré que la protéine neuronale Ankyrin2 (Ank2), qui est connue pour jouer un rôle statique en liant la membrane plasmique au cytosquelette dans la plaque motrice, est une cible directe de Gαo. L'interaction physique et génétique entre Gαo et Ank2 constitue ainsi une bifurcation de la voie de signalisation présynaptique Wg. Cette voie régule le cytosquelette des microtubules en coopération avec la branche liée à la protéine Futsch. Cette protéine est l'homologue de la protéine liant les microtubules MAP1B des mammifères et contrôle la stabilité des microtubules opérant en aval de la kinase Sgg (l'homologue de GSK3ß). De plus, la régulation du cytosquelette par l'interaction entre Gαo et Ankyrin est conservée chez les mammifères. Dans leur ensemble, nos résultats ont permis d'identifier un nouveau mode de régulation du cytosquelette dans le système nerveux, probablement valable de manière universelle. La voie de signalisation Wnt est soupçonnée d'être impliquée dans la toxicité provoquée par le peptide Aß dans le cadre de la maladie d'Alzheimer. Nous avons tenté de modéliser la maladie chez la drosophile en exprimant Aß42 spécifiquement dans le cerveau. Cette expérience a montré que l'expression neuronale d'Aß42 réduit la durée de vie des mouches de manière significative par un mécanisme impliquant les cellules glutamatergiques. Par contre, aucune modification morphologique n'est provoquée par Aß42 dans les plaques motrices glutamatergiques. Ces résultats montrent que ce modèle de Drosophile n'est pas adéquat pour l'étude de la maladie d'Alzheimer. De plus, l'activation génétique de la voie de signalisation Wg n'a pas réussi à restaurer les phénotypes de survie ou ceux des yeux causés par Aß42. Ces résultats indiquent que l'implication de la voie de signalisation Wg dans la maladie d'Alzheimer doit être considérée avec prudence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cilengitide is a high-affinity cyclic pentapeptdic alphaV integrin antagonist previously reported to suppress angiogenesis by inducing anoikis of endothelial cells adhering through alphaVbeta3/alphaVbeta5 integrins. Angiogenic endothelial cells express multiple integrins, in particular those of the beta1 family, and little is known on the effect of cilengitide on endothelial cells expressing alphaVbeta3 but adhering through beta1 integrins. Through morphological, biochemical, pharmacological and functional approaches we investigated the effect of cilengitide on alphaVbeta3-expressing human umbilical vein endothelial cells (HUVEC) cultured on the beta1 ligands fibronectin and collagen I. We show that cilengitide activated cell surface alphaVbeta3, stimulated phosphorylation of FAK (Y(397) and Y(576/577)), Src (S(418)) and VE-cadherin (Y(658) and Y(731)), redistributed alphaVbeta3 at the cell periphery, caused disappearance of VE-cadherin from cellular junctions, increased the permeability of HUVEC monolayers and detached HUVEC adhering on low-density beta1 integrin ligands. Pharmacological inhibition of Src kinase activity fully prevented cilengitide-induced phosphorylation of Src, FAK and VE-cadherin, and redistribution of alphaVbeta3 and VE-cadherin and partially prevented increased permeability, but did not prevent HUVEC detachment from low-density matrices. Taken together, these observations reveal a previously unreported effect of cilengitide on endothelial cells namely its ability to elicit signaling events disrupting VE-cadherin localization at cellular contacts and to increase endothelial monolayer permeability. These effects are potentially relevant to the clinical use of cilengitide as anticancer agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: A fundamental phenomenon in inflammation is the loss of endothelial barrier function, in which the opening of endothelial cell junctions plays a central role. However, the molecular mechanisms that ultimately open the cell junctions are largely unknown.¦METHODS AND RESULTS: Impedance spectroscopy, biochemistry, and morphology were used to investigate the role of caveolin-1 in the regulation of thrombin-induced opening of cell junctions in cultured human and mouse endothelial cells. Here, we demonstrate that the vascular endothelial (VE) cadherin/catenin complex targets caveolin-1 to endothelial cell junctions. Association of caveolin-1 with VE-cadherin/catenin complexes is essential for the barrier function decrease in response to the pro-inflammatory mediator thrombin, which causes a reorganization of the complex in a rope ladder-like pattern accompanied by a loss of junction-associated actin filaments. Mechanistically, we show that in response to thrombin stimulation the protease-activated receptor 1 (PAR-1) causes phosphorylation of caveolin-1, which increasingly associates with β- and γ-catenin. Consequently, the association of β- and γ-catenin with VE-cadherin is weakened, thus allowing junction reorganization and a decrease in barrier function. Thrombin-induced opening of cell junctions is lost in caveolin-1-knockout endothelial cells and after expression of a Y/F-caveolin-1 mutant but is completely reconstituted after expression of wild-type caveolin-1.¦CONCLUSION: Our results highlight the pivotal role of caveolin-1 in VE-cadherin-mediated cell adhesion via catenins and, in turn, in barrier function regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Reconstruction of the posterior cruciate ligament (PCL) yields less satisfying results than anterior cruciate ligament reconstruction with respect to laxity control. Accurate tibial tunnel placement is crucial for successful PCL reconstruction using arthroscopic tibial tunnel techniques. A discrepancy between anatomical studies of the tibial PCL insertion site and surgical recommendations for tibial tunnel placement remains. The objective of this study was to identify the optimal placement of the tibial tunnel in PCL reconstruction based on clinical studies. METHODS: In a systematic review of the literature, MEDLINE, EMBASE, Cochrane Review, and Cochrane Central Register of Controlled Trials were screened for articles about PCL reconstruction from January 1990 to September 2011. Clinical trials comparing at least two PCL reconstruction techniques were extracted and independently analysed by each author. Only studies comparing different tibial tunnel placements in the retrospinal area were included. RESULTS: This systematic review found no comparative clinical trial for tibial tunnel placement in PCL reconstruction. Several anatomical, radiological, and biomechanical studies have described the tibial insertion sites of the native PCL and have led to recommendations for placement of the tibial tunnel outlet in the retrospinal area. However, surgical recommendations and the results of morphological studies are often contradictory. CONCLUSIONS: Reliable anatomical landmarks for tunnel placement are lacking. Future randomized controlled trials could compare precisely defined tibial tunnel placements in PCL reconstruction, which would require an established mapping of the retrospinal area of the tibial plateau with defined anatomical and radiological landmarks.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurons and astrocytes, the two major cell populations in the adult brain, are characterized by their own mode of intercellular communication--the synapses and the gap junctions (GJ), respectively. In addition, there is increasing evidence for dynamic and metabolic neuroglial interactions resulting in the modulation of synaptic transmission at the so-called "tripartite synapse". Based on this, we have investigated at the ultrastructural level how excitatory synapses (ES) and astroglial GJ are spatially distributed in layer IV of the barrel cortex of the adult mouse. We used specific antibodies for connexin (Cx) 30 and 43 to identify astroglial GJ, these two proteins are known to be present in the majority of astroglial GJ in the cerebral cortex. In electron-microscopic images, we measured the distance between two ES, between two GJ and between a GJ and its nearest ES. We found a ratio of two GJ per three ES in the hollow and septal areas. Taking into account the size of an astrocyte domain, the high density of GJ suggests the occurrence of reflexive type, i.e. GJ between processes of the same astrocyte. Interestingly, the distance between an ES and an astroglial GJ was found to be significantly lower than that between either two synapses or between two GJ. These observations indicate that the two modes of cell-to-cell communication are not randomly distributed in layer IV of the barrel cortex. Consequently, this feature may provide the morphological support for the recently reported functional interactions between neuronal circuits and astroglial networks.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Gastric or intestinal patches, commonly used for reconstructive cystoplasty, may induce severe metabolic complications. The use of bladder tissues reconstructed in vitro could avoid these complications. We compared cellular differentiation and permeability characteristics of human native with in vitro cultured stratified urothelium. MATERIALS AND METHODS: Human stratified urothelium was induced in vitro. Morphology was studied with light and electron microscopy and expression of key cellular proteins was assessed using immunohistochemistry. Permeability coefficients were determined by measuring water, urea, ammonia and proton fluxes across the urothelium. RESULTS: As in native urothelium the stratified urothelial construct consisted of basal membrane and basal, intermediate and superficial cell layers. The apical membrane of superficial cells formed villi and glycocalices, and tight junctions and desmosomes were developed. Immunohistochemistry showed similarities and differences in the expression of cytokeratins, integrin and cellular adhesion proteins. In the cultured urothelium cytokeratin 20 and integrin subunits alpha6 and beta4 were absent, and symplekin was expressed diffusely in all layers. Uroplakins were clearly expressed in the superficial umbrella cells of the urothelial constructs, however, they were also present in intermediate and basal cells. Symplekin and uroplakins were expressed only in the superficial cells of native bladder tissue. The urothelial constructs showed excellent viability, and functionally their permeabilities for water, urea and ammonia were no different from those measured in native human urothelium. Proton permeability was even lower in the constructs compared to that of native urothelium. CONCLUSIONS: Although the in vitro cultured human stratified urothelium did not show complete terminal differentiation of its superficial cells, it retained the same barrier characteristics against the principal urine components. These results indicate that such in vitro cultured urothelium, after being grown on a compliant degradable support or in coculture with smooth muscle cells, is suitable for reconstructive cystoplasty.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lymphatic vessels arise during development through sprouting of precursor cells from veins, which is regulated by known signaling and transcriptional mechanisms. The ongoing elaboration of vessels to form a network is less well understood. This involves cell polarization, coordinated migration, adhesion, mixing, regression, and shape rearrangements. We identified a zebrafish mutant, lymphatic and cardiac defects 1 (lyc1), with reduced lymphatic vessel development. A mutation in polycystic kidney disease 1a was responsible for the phenotype. PKD1 is the most frequently mutated gene in autosomal dominant polycystic kidney disease (ADPKD). Initial lymphatic precursor sprouting is normal in lyc1 mutants, but ongoing migration fails. Loss of Pkd1 in mice has no effect on precursor sprouting but leads to failed morphogenesis of the subcutaneous lymphatic network. Individual lymphatic endothelial cells display defective polarity, elongation, and adherens junctions. This work identifies a highly selective and unexpected role for Pkd1 in lymphatic vessel morphogenesis during development.