26 resultados para Trimetilación Histona H3
Resumo:
Aim: Aquaglyceroporin-9 (AQP9) is a member of the Aquaporin channel family involved in water flux through plasma membranes and exhibits the distinctive feature of also being permeable to glycerol and monocarboxylates. AQP9 is detected in astrocytes and catecholaminergic neurons.1 However, the presence of AQP9 in the brain is now debated after a recent publication claiming that AQP9 is not expressed in the brain.2 Based on our results,3 we have evidence of the presence of AQP9 in the brain and we further hypothesize that AQP9 plays a functional role in brain energy metabolism. Methods: The presence of AQP9 in brain of OF1 mice was studied by RT-PCR and immunohistochemistry. To address the role of AQP9 in brain, we used commercial siRNA against AQP9 to knockdown its expression in 2 cultures of astrocytes from two distinct sources (from differentiated stem cells4 and primary astrocyte cultures). After assessment of the decrease of AQP9, glycerol uptake was measured using [H3]-glycerol. Then, modifications of the astrocytic energy metabolism was evaluated by measurement of glucose consumption, lactate release5 and evaluation of the mitochondrial activity by MTT staining. Results: AQP9 is expressed in astrocytes of OF1 mouse brain (mRNA and protein levels). We also showed that AQP9 mRNA and protein are present in cultured astrocytes. Four days after AQP9 siRNA application, the level of expression is significantly decreased by 76% compared to control. Astrocytes with AQP9 knockdown exhibit a 23% decrease of glycerol uptake, showing that AQP9 is a glycerol channel in cultured astrocytes. In parallel, astrocytes with AQP9 knockdown have a 155% increase of their glucose consumption without modifications of lactate release. Moreover, considering the observed glucose consumption increase and the absence of proliferation induction, the significant MTT activity increase (113%) suggests an increase of oxidative metabolism in astrocytes with AQP9 knockdown. Discussion: The involvement of AQP9 in astrocyte energy metabolism adds a new function for this channel in the brain. The determination of the role of AQP9 in astrocytes provides a new perspective on the controversial expression of AQP9 in brain. We also suggest that AQP9 may have a complementary role to monocarboxylate transporters in the regulation of brain energy metabolism.
Resumo:
Summary The cyclin-dependent kinase inhibitor p16(INK4a) (CDKN2A) is an important tumor-suppressor gene frequently inactivated in human tumors. p16 suppresses the development of cancer by triggering an irreversible arrest of cell proliferation termed cellular senescence. Here, we describe another anti-oncogenic function of p16 in addition to its ability to halt cell cycle progression. We show that transient expression of p16 stably represses the hTERT gene, encoding the catalytic subunit of telomerase, in both normal and malignant breast epithelial cells. Short-term p16 expression increases the amount of histone H3 trimethylated on lysine 27 (H3K27) bound to the hTERT promoter, resulting in transcriptional silencing, likely mediated by polycomb complexes. Our results indicate that transient p16 exposure may prevent malignant progression in dividing cells by irreversible repression of genes, such as hTERT, whose activity is necessary for extensive self-renewal.
Resumo:
In order for some patients to benefit from aggressive chemotherapy for invasive breast carcinoma, many patients are currently being treated without little or no benefit. Enormous effort is hence being directed towards the identification of those patients who will need chemotherapy and those who will not. Since chemotherapy targets proliferating cells pathologists focus on the proliferative activity of tumors, as assessed by mitotic figure counts or by cell cycle specific immunohistochemical markers, such as Ki-67 and H3 histone. As far as the tumor grade is concerned, many of these studies have reported a tendency to up-grade carcinomas in resection specimen when compared to the initial diagnosis on the biopsy material, and most studies have noted that the upgrade in resection specimen is due solely or to a large extent to an increase in the mitotic figure count. In the present study, we propose a different explanation for the divergence in mitotic figure counts between biopsy and resection material. We assessed the proliferative activity of 52 invasive ductal carcinomas and confirm that the number of mitotic figures significantly increased by a factor of more than 3 in resection specimen over the biopsy material, while at the same time the pan-cell cycle specific marker MIB-1 yieldes comparable results. we propose that the delayed formalin fixation of resection specimen allows cell cycle activities to continue for a long time, up to many hours, and that this leads to an arrest of mitoses in metaphase where they are readily identified by the pathologist. We propose that the mitotic figure count in the rapidly fixed biopsy cores better represent the tumor biology and should be used as a basis for chemotherapy therapeutic decisions.
Resumo:
Krüppel-associated box domain-zinc finger proteins (KRAB-ZFPs) are tetrapod-specific transcriptional repressors encoded in the hundreds by the human genome. In order to explore their as yet ill-defined impact on gene expression, we developed an ectopic repressor assay, allowing the study of KRAB-mediated transcriptional regulation at hundreds of different transcriptional units. By targeting a drug-controllable KRAB-containing repressor to gene-trapping lentiviral vectors, we demonstrate that KRAB and its corepressor KAP1 can silence promoters located several tens of kilobases (kb) away from their DNA binding sites, with an efficiency which is generally higher for promoters located within 15 kb or less. Silenced promoters exhibit a loss of histone H3-acetylation, an increase in H3 lysine 9 trimethylation (H3K9me3), and a drop in RNA Pol II recruitment, consistent with a block of transcriptional initiation following the establishment of silencing marks. Furthermore, we reveal that KRAB-mediated repression is established by the long-range spreading of H3K9me3 and heterochromatin protein 1 beta (HP1beta) between the repressor binding site and the promoter. We confirm the biological relevance of this phenomenon by documenting KAP1-dependent transcriptional repression at an endogenous KRAB-ZFP gene cluster, where KAP1 binds to the 3' end of genes and mediates propagation of H3K9me3 and HP1beta towards their 5' end. Together, our data support a model in which KRAB/KAP1 recruitment induces long-range repression through the spread of heterochromatin. This finding not only suggests auto-regulatory mechanisms in the control of KRAB-ZFP gene clusters, but also provides important cues for interpreting future genome-wide DNA binding data of KRAB-ZFPs and KAP1.
Resumo:
Eukaryotic genomes are compartmentalized in different structural domains that can affect positively or negatively gene expression. These regions of euchromatin and heterochromatin are characterized by distinct histones marks which can facilitate or repress gene transcription. The chromatin environment represents thus one of the main problems to control gene expression in biotechnological applications or gene therapy, since its expression is affected by the chromatin neighboring its locus of insertion. Some chromatin regions like telomeres are composed of constitutive heterochromatin which leads to the telomeric position effect (TPE) that silences genes adjacent to the telomere. TPE is known to spread by the selfrecruitment of the SIR histone deacetylase complex from the telomere in S.cerevisiae, but the histone marks that are associated to telomeric chromatin in mammalian cells remain mostly unknown. The transcription factor CTF1 has shown antisilencing properties in mammalian cells and also a boundary activity against TPE in yeast cells when fused to the yeast Gal4 DNA binding domain. In the work presented here, we describe a dual-reporter system to assess the boundary activity of proteins such as CTF1 at human telomeres. When located between the two reporter genes, CTF1 shields the telomere distal gene from TPE, while the telomereproximal gene remains silenced by telomeric heterochromatin. The boundary activity of CTF1 is shown to act regardless its function of transcriptional activator, by opposition to the transcriptional activator VP16 which activates indifferently both transgenes. Moreover, this study shows that CTF1 boundary activity is linked to its H3 binding function, as expected from a chromatin remodeler. ChIP experiments showed that histone deacetylation is the main histone modification involved in gene silencing at mammalian cell telomeres. Distinctly to yeast cells, the histone deacetylation signal in human cells extented over a short range along the chromosome. CTF1 may help to block this propagation and therefore to restore histones acetylation level on telomere protected locus. Surprisingly, other histone marks such as trimethyl-H3K9 or trimethyl-H4K20 were found on telomere protected locus, while in another clone, unsilencing of telomere distal transgene was associated with recruitment of the histone variant H2A.Z. Thus, I conclude that CTF1 displays a chromatin boundary function which is independent of its transcriptional activity and therefore exhibit features required for use as chromatin insulator in biotechnological applications. RESUME Les génomes eucaryotes sont compartementalisés en domaines structurels qui peuvent affecter positivement ou négativement l'expression des gènes avoisinants. Ces régions dites d'euchromatine ou d'hétérochromatine sont caractérisées par des modifications posttraductionnelles des histones qui peuvent faciliter ou au contraire inhiber la transcription des gènes qui s'y trouvent. Ainsi, isoler un gène de son environnement chromatinien est problème fréquent lorsqu'il s'agit de contrôler son expression dans le cadre d'applications en biotechnologie ou encore en thérapie génique. Certaines régions de chromatine telles que les télomères sont composées d'hétérochromatine constitutive qui mène au silençage des gènes avoisinants. Cet effet de position télomérique (TPE) est connu dans la levure S.cerevisiae comme se propageant par auto-recrutement du complexe de déacétylation d'histone SIR, alors que peu de modifications de chromatine ont pu être associées à ce phénomène dans les cellules de mammifères. Le facteur de transcription CTF1 a montré des propriétés d'anti-silençage dans les cellules de mammifères, ainsi qu'une activité barrière contre le silençage télomérique dans les cellules de levures lorsqu'il est fusionné au domaine de liaison à l'ADN de la protéine de levure Gal4. Dans le travail présenté ci-après est décrit un système à deux gènes rapporteurs permettant de mesurer l'activité barrière de protéines telles que CTF1 aux télomères humains, et les modifications de chromatine qui y sont associées. Lorsque CTF1 est placé entre les deux gènes rapporteurs, le gène distant du télomère est protégé du silençage qui lui est associé, alors que le gène proche du télomère reste soumis à ce silençage induit par l'hétérochromatine télomérique. L'activité barrière de CTF1 est montrée ici comme agissant indépendamment de son activité transcriptionnelle, par opposition à l'activateur transcriptionnel VP16 qui active indifféremment les deux transgènes. En outre, cette étude appuie l'hypothèse stipulant que CTF1 agisse comme remodeleur chromatinien puisqu'elle démontre que son activité barrière est directement dépendante de son activité de liaison avec l'histone H3. De plus, des expériences d'immuno-précipitation de la chromatine démontrent que la déacétylation des histones est le majeur phénomène intervenant dans le silençage télomérique. Par opposition à la levure, ce signal de déacétylation ne se propage dans les cellules humaines que sur une courte distance le long du chromosome. CTF1 agit ainsi en bloquant cette propagation et en restaurant le niveau d'acétylation des histones sur le locus protégé du télomère. De manière surprenante et inattendue, d'autres modifications d'histones telles que 4 les H3K9 et H4K20 triméthylées sont aussi observées à ce locus, tandis le recrutement du variant H2A.Z peut aussi être suffisant à restaurer l'expression du gène distant du télomère. En terme de cette analyse, CTF1 exhibe ainsi une fonction de barrière chromatinienne qui exclue une activité transcriptionnelle non désirée - propriété qui est requise dans l'établissement des isolateurs visant à permettre le contrôle d'un transgène dans le cadre d'applications en biotechnologies.
Resumo:
Rhabdomyosarcomas (RMS) are the most frequent soft-tissue sarcoma in children and characteristically show features of developing skeletal muscle. The alveolar subtype is frequently associated with a PAX3-FOXO1 fusion protein that is known to contribute to the undifferentiated myogenic phenotype of RMS cells. Histone methylation of lysine residues controls developmental processes in both normal and malignant cell contexts. Here we show that JARID2, which encodes a protein known to recruit various complexes with histone-methylating activity to their target genes, is significantly overexpressed in RMS with PAX3-FOXO1 compared with the fusion gene-negative RMS (t-test; P < 0.0001). Multivariate analyses showed that higher JARID2 levels are also associated with metastases at diagnosis, independent of fusion gene status and RMS subtype (n = 120; P = 0.039). JARID2 levels were altered by silencing or overexpressing PAX3-FOXO1 in RMS cell lines with and without the fusion gene, respectively. Consistent with this, we demonstrated that JARID2 is a direct transcriptional target of the PAX3-FOXO1 fusion protein. Silencing JARID2 resulted in reduced cell proliferation coupled with myogenic differentiation, including increased expression of Myogenin (MYOG) and Myosin Light Chain (MYL1) in RMS cell lines representative of both the alveolar and embryonal subtypes. Induced myogenic differentiation was associated with a decrease in JARID2 levels and this phenotype could be rescued by overexpressing JARID2. Furthermore, we that showed JARID2 binds to and alters the methylation status of histone H3 lysine 27 in the promoter regions of MYOG and MYL1 and that the interaction of JARID2 at these promoters is dependent on EED, a core component of the polycomb repressive complex 2 (PRC2). Therefore, JARID2 is a downstream effector of PAX3-FOXO1 that maintains an undifferentiated myogenic phenotype that is characteristic of RMS. JARID2 and other components of PRC2 may represent novel therapeutic targets for treating RMS patients.
Resumo:
Transforming growth factor beta (TGF-beta) and tumor necrosis factor alpha (TNF-alpha) often exhibit antagonistic actions on the regulation of various activities such as immune responses, cell growth, and gene expression. However, the molecular mechanisms involved in the mutually opposing effects of TGF-beta and TNF-alpha are unknown. Here, we report that binding sites for the transcription factor CTF/NF-I mediate antagonistic TGF-beta and TNF-alpha transcriptional regulation in NIH3T3 fibroblasts. TGF-beta induces the proline-rich transactivation domain of specific CTF/NF-I family members, such as CTF-1, whereas TNF-alpha represses both the uninduced as well as the TGF-beta-induced CTF-1 transcriptional activity. CTF-1 is thus the first transcription factor reported to be repressed by TNF-alpha. The previously identified TGF-beta-responsive domain in the proline-rich transcriptional activation sequence of CTF-1 mediates both transcriptional induction and repression by the two growth factors. Analysis of potential signal transduction intermediates does not support a role for known mediators of TNF-alpha action, such as arachidonic acid, in CTF-1 regulation. However, overexpression of oncogenic forms of the small GTPase Ras or of the Raf-1 kinase represses CTF-1 transcriptional activity, as does TNF-alpha. Furthermore, TNF-alpha is unable to repress CTF-1 activity in NIH3T3 cells overexpressing ras or raf, suggesting that TNF-alpha regulates CTF-1 by a Ras-Raf kinase-dependent pathway. Mutagenesis studies demonstrated that the CTF-1 TGF-beta-responsive domain is not the primary target of regulatory phosphorylations. Interestingly, however, the domain mediating TGF-beta and TNF-alpha antagonistic regulation overlapped precisely the previously identified histone H3 interaction domain of CTF-1. These results identify CTF-1 as a molecular target of mutually antagonistic TGF-beta and TNF-alpha regulation, and they further suggest a molecular mechanism for the opposing effects of these growth factors on gene expression.
Resumo:
Efficient initiation of SV40 DNA replication requires transcription factors that bind auxiliary sequences flanking the minimally required origin. To evaluate the possibility that transcription factors may activate SV40 replication by acting on the chromatin structure of the origin, we used an in vivo replication system in which we targeted GAL4 fusion proteins to the minimally required origin. We found that the proline-rich transcriptional activation domain of nuclear factor I (NF-I), which has been previously shown to interact with histone H3, specifically activates replication. Evaluation of a series of deletion and point mutants of NF-I indicates that the H3-binding domain and the replication activity coincide perfectly. Assays with other transcription factors, such as Sp1, confirmed the correlation between the interaction with H3 and the activation of replication. These findings imply that transcription factors such as NF-I can activate SV40 replication via direct interaction with chromatin components, thereby contributing to the relief of nucleosomal repression at the SV40 origin.
Resumo:
In eukaryotic cells, transgene expression levels may be limited by an unfavourable chromatin structure at the integration site. Epigenetic regulators are DNA sequences which may protect transgenes from such position effect. We evaluated different epigenetic regulators for their ability to protect transgene expression at telomeres, which are commonly associated to low or inconsistent expression because of their repressive chromatin environment. Although to variable extents, matrix attachment regions (MARs), ubiquitous chromatin opening element (UCOE) and the chicken cHS4 insulator acted as barrier elements, protecting a telomeric-distal transgene from silencing. MARs also increased the probability of silent gene reactivation in time-course experiments. Additionally, all MARs improved the level of expression in non-silenced cells, unlike other elements. MARs were associated to histone marks usually linked to actively expressed genes, especially acetylation of histone H3 and H4, suggesting that they may prevent the spread of silencing chromatin by imposing acetylation marks on nearby nucleosomes. Alternatively, an UCOE was found to act by preventing deposition of repressive chromatin marks. We conclude that epigenetic DNA elements used to enhance and stabilize transgene expression all have specific epigenetic signature that might be at the basis of their mode of action.
Resumo:
UNLABELLED: Pharmacologically-induced activation of replication competent proviruses from latency in the presence of antiretroviral treatment (ART) has been proposed as a step towards curing HIV-1 infection. However, until now, approaches to reverse HIV-1 latency in humans have yielded mixed results. Here, we report a proof-of-concept phase Ib/IIa trial where 6 aviremic HIV-1 infected adults received intravenous 5 mg/m2 romidepsin (Celgene) once weekly for 3 weeks while maintaining ART. Lymphocyte histone H3 acetylation, a cellular measure of the pharmacodynamic response to romidepsin, increased rapidly (maximum fold range: 3.7-7.7 relative to baseline) within the first hours following each romidepsin administration. Concurrently, HIV-1 transcription quantified as copies of cell-associated un-spliced HIV-1 RNA increased significantly from baseline during treatment (range of fold-increase: 2.4-5.0; p = 0.03). Plasma HIV-1 RNA increased from <20 copies/mL at baseline to readily quantifiable levels at multiple post-infusion time-points in 5 of 6 patients (range 46-103 copies/mL following the second infusion, p = 0.04). Importantly, romidepsin did not decrease the number of HIV-specific T cells or inhibit T cell cytokine production. Adverse events (all grade 1-2) were consistent with the known side effects of romidepsin. In conclusion, romidepsin safely induced HIV-1 transcription resulting in plasma HIV-1 RNA that was readily detected with standard commercial assays demonstrating that significant reversal of HIV-1 latency in vivo is possible without blunting T cell-mediated immune responses. These finding have major implications for future trials aiming to eradicate the HIV-1 reservoir. TRIAL REGISTRATION: clinicaltrials.gov NTC02092116.
Resumo:
All plants are typically confronted to simultaneous biotic and abiotic stress throughout their life cycle. Low inorganic phosphate (Pi) is the most common nutrient deficiency limiting plant growth in natural and agricultural ecosystems while insect herbivory accounts for major losses in plant productivity and impacts on ecological and evolutionary changes in plant populations. Here we report that plants experiencing Pi deficiency induce the jasmonic acid (JA) pathway and enhance their defence against insect herbivory. The phol mutant is impaired in the translocation of Pi from roots to shoots and shows the typical symptoms associated with Pi deficiency, including high anthocyanin and poor shoot growth. These phol shoot phenotypes were significantly attenuated by blocking the JA biosynthesis or signalling pathways. Wounded phol leaves hyper-accumulated JA in comparison to wild type, leading to increased resistance against the generalist herbivore Spodoptera littoralis. Pi deficiency also triggered enhanced resistance to herbivory in wild-type Arabidopsis as well as tomato and tobacco, revealing that the link between Pi deficiency and JA-mediated herbivory resistance is conserved in a diversity of plants, including crops. We performed a phol suppressor screen to identify new components involved in the adaptation of plants to Pi deficiency. We report that the THO RNA TRANSCRIPTION AND EXPORT (THO/TREX) complex is a crucial component involved in modulating the Pi- deficiency response. Knockout mutants of at least three members of the THO/TREX complex, including TEX1, HPR1, and TH06, can suppress the phol shoot phenotype. Grafting experiments showed that loss of function of TEX1 only in the root was sufficient to suppress the reduced shoot growth phenotype of phol while maintaining low Pi contents. This indicates that TEX1 is involved in a long distance root-to-shoot signalling component of the Pi-deficiency response. We identified a small MYB-like transcription factor, RAD LIKE 3 (RL3), as a potential downstream target of the THO/TREX complex. RL3 expression is induced in phol mutants but attenuated in phol-7 texl-4 double mutants. Identical to knockout mutants of the THO/TREX complex, rl3 mutants can suppress the phol shoot phenotypes. Interestingly, RL3 is induced during Pi deficiency and is described in the literature as likely being mobile. It is therefore a promising new candidate involved in the root-to-shoot Pi-deficiency signalling response. Finally, we report that PHOl and its homologue PH01:H3 are involved in the co-regulation of Pi and zinc (Zn) homeostasis. PH01;H3 is up-regulated in response to Zn deficiency and, like PHOl, is expressed in the root vascular cylinder and localizes to the Golgi when expressed transiently in tobacco cells. The phol;h3 mutant accumulates more Pi as compared to wild-type when grown in Zn-deficient medium, but this increase is abolished in the phol phol;h3 double mutant. These results suggest that PH01;H3 restricts the PHOl-mediated root-to-shoot Pi transfer in responsé to Zn deficiency. Résumé Au cours de leur cycle de vie, toutes les plantes sont généralement confrontées à divers stress biotiques et abiotiques. La carence nutritionnelle la plus fréquente, limitant la croissance des plantes dans les écosystèmes naturels et agricoles, est la faible teneur en phosphate inorganique (Pi). Au niveau des stress biotiques, les insectes herbivores sont responsables de pertes majeures de rendement et ont un impact considérable sur les changements écologiques et évolutifs dans les populations des plantes. Au cours de ce travail, nous avons mis en évidence que les plantes en situation de carence en Pi induisent la voie de l'acide jasmonique (JA) et augmentent leur défense contre les insectes herbivores. Le mutant phol est déficient dans le transport du phosphate des racines aux feuilles et démontre les symptômes typiques associés à la carence, tels que la forte concentration en anthocyane et une faible croissance foliaire. Ces phénotypes du mutant phol sont significativement atténués lors d'un blocage de la voie de la biosynthèse ou des voies de signalisation du JA. La blessure des feuilles induit une hyper-accumulation de JA chez phol, résultant en une augmentation de la résistance contre l'herbivore généraliste Spodoptera littoralis. Outre Arabidopsis, la carence en Pi induit une résistance accrue aux insectes herbivores aussi chez la tomate et le tabac. Cette découverte révèle que le lien entre la carence en Pi et la résistance aux insectes herbivores via le JA est conservé dans différentes espèces végétales, y compris les plantes de grandes cultures. Nous avons effectué un crible du suppresseur de phol afin d'identifier de nouveaux acteurs impliqués dans l'adaptation de la plante à la carence en Pi. Nous rapportons que le complexe nommé THO RNA TRANSCRIPTION AND EXPORT (THO/TREX) est un élément crucial participant à la réponse des feuilles à la carence en Pi. Les mutations d'au moins trois des membres que composent le complexe THO/TREX, incluant TEX1, HPR1 et 77/06, peuvent supprimer le phénotype de phol. Des expériences de greffes ont montré que la perte de fonction de TEX1, seulement dans la racine, est suffisante pour supprimer le phénotype de la croissance réduite des parties aériennes observé chez le mutant phol, tout en maintenant de faibles teneurs en Pi foliaire. Ceci indique que TEX1 est impliqué dans la signalisation longue distance entre les racines et les parties aériennes. Nous avons identifié un petit facteur de transcription proche de la famille des MYB, RAD LIKE 3 (RL3), comme une cible potentielle en aval du complexe THO / TREX. L'expression du gène RL3 est induite dans le mutant phol mais atténuée dans le double mutant phol-7 texl-4. Exactement comme les plantes mutées d'un des membres du complexe THO/TREX, le mutant rl3 peut supprimer le phénotype foliaire de phol. RL3 est induit au cours d'une carence en Pi et est décrit dans la littérature comme étant potentiellement mobile. Par conséquent, il serait un nouveau candidat potentiellement impliqué dans la réponse longue distance entre les racines et les parties aériennes lors d'un déficit en Pi. Enfin, nous reportons que PHOl et son homologue PHOl: H3 sont impliqués dans la co- régulation de l'homéostasie du Pi et du zinc (Zn). PHOl; H3 est sur-exprimé en réponse au déficit en Zn et, comme PHOl, est exprimé dans les tissus vasculaires des racines et se localise dans l'appareil de Golgi lorsqu'il est exprimé de manière transitoire dans des cellules de tabac. Le mutant phol; h3 accumule plus de Pi par rapport aux plantes sauvages lorsqu'il est cultivé sur un milieu déficient en Zn, mais cette augmentation en Pi est abolie dans le double mutant phol phol; h3. Ces résultats suggèrent qu'en réponse à une carence en Zn, PHOl; H3 limite l'action de PHOl et diminue le transfert du Pi des racines aux parties aériennes.