18 resultados para Transition intensity parameters
Resumo:
PURPOSE: This study investigated maximal cardiometabolic response while running in a lower body positive pressure treadmill (antigravity treadmill (AG)), which reduces body weight (BW) and impact. The AG is used in rehabilitation of injuries but could have potential for high-speed running, if workload is maximally elevated. METHODS: Fourteen trained (nine male) runners (age 27 ± 5 yr; 10-km personal best, 38.1 ± 1.1 min) completed a treadmill incremental test (CON) to measure aerobic capacity and heart rate (V˙O2max and HRmax). They completed four identical tests (48 h apart, randomized order) on the AG at BW of 100%, 95%, 90%, and 85% (AG100 to AG85). Stride length and rate were measured at peak velocities (Vpeak). RESULTS: V˙O2max (mL·kg·min) was similar across all conditions (men: CON = 66.6 (3.0), AG100 = 65.6 (3.8), AG95 = 65.0 (5.4), AG90 = 65.6 (4.5), and AG85 = 65.0 (4.8); women: CON = 63.0 (4.6), AG100 = 61.4 (4.3), AG95 = 60.7 (4.8), AG90 = 61.4 (3.3), and AG85 = 62.8 (3.9)). Similar results were found for HRmax, except for AG85 in men and AG100 and AG90 in women, which were lower than CON. Vpeak (km·h) in men was 19.7 (0.9) in CON, which was lower than every other condition: AG100 = 21.0 (1.9) (P < 0.05), AG95 = 21.4 (1.8) (P < 0.01), AG90 = 22.3 (2.1) (P < 0.01), and AG85 = 22.6 (1.6) (P < 0.001). In women, Vpeak (km·h) was similar between CON (17.8 (1.1) ) and AG100 (19.3 (1.0)) but higher at AG95 = 19.5 (0.4) (P < 0.05), AG90 = 19.5 (0.8) (P < 0.05), and AG85 = 21.2 (0.9) (P < 0.01). CONCLUSIONS: The AG can be used at maximal exercise intensities at BW of 85% to 95%, reaching faster running speeds than normally feasible. The AG could be used for overspeed running programs at the highest metabolic response levels.
Resumo:
BACKGROUND/OBJECTIVES: There is little objective information regarding nutrition transition in African countries. We assessed trends in nutrition patterns in the Seychelles between 1989 and 2011. SUBJECTS/METHODS: Population-based samples were obtained in 1989, 1994 and 2011 and participants aged 25-44 are considered in this study (n=493, 599 and 471, respectively). Similar, although not identical, food frequency questionnaires (FFQs) were used in each survey and the variables were collapsed into homogenous categories for the purpose of this study. RESULTS: Between 1989 and 2011, consumption frequency of fish (5+/week) decreased from 93 to 74%, whereas the following increased: meat (5+/week) 25 to 51%, fruits (1+/week) 48 to 94%, salty snacks (1+/week) 22 to 64% and sweet snacks (1+/week) 38 to 67% (P<0.001 for all). Consumption frequency decreased for home-brewed alcoholic drinks (1+/week) 16 to 1%, but increased for wine (1+/week) 5 to 33% (both P<0.001). Between 2004 and 2011, consumption frequency decreased for rice (2/day) 62 to 57% and tea (1+/day) 72 to 68%, increased for poultry (1+/week) 86 to 96% (all P<0.01), and did not change for vegetables (70.3 to 69.8%, P=0.65). CONCLUSIONS: Seychelles is experiencing nutrition transition characterized by a decreased consumption frequency of traditional staple foods (fish, polished rice), beverages (tea) and of inexpensive home brews, and increased consumption frequency of meat, poultry and snacks. Food patterns also became more varied along with a broader availability of products in the 22-year interval. The health impact of these changes should be further studied.
Resumo:
Water movement in unsaturated soils gives rise to measurable electrical potential differences that are related to the flow direction and volumetric fluxes, as well as to the soil properties themselves. Laboratory and field data suggest that these so-called streaming potentials may be several orders of magnitudes larger than theoretical predictions that only consider the influence of the relative permeability and electrical conductivity on the self potential (SP) data. Recent work has improved predictions somewhat by considering how the volumetric excess charge in the pore space scales with the inverse of water saturation. We present a new theoretical approach that uses the flux-averaged excess charge, not the volumetric excess charge, to predict streaming potentials. We present relationships for how this effective excess charge varies with water saturation for typical soil properties using either the water retention or the relative permeability function. We find large differences between soil types and the predictions based on the relative permeability function display the best agreement with field data. The new relationships better explain laboratory data than previous work and allow us to predict the recorded magnitudes of the streaming potentials following a rainfall event in sandy loam, whereas previous models predict values that are three orders of magnitude too small. We suggest that the strong signals in unsaturated media can be used to gain information about fluxes (including very small ones related to film flow), but also to constrain the relative permeability function, the water retention curve, and the relative electrical conductivity function.