109 resultados para Thermal Simulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The ambition of most molecular biologists is the understanding of the intricate network of molecular interactions that control biological systems. As scientists uncover the components and the connectivity of these networks, it becomes possible to study their dynamical behavior as a whole and discover what is the specific role of each of their components. Since the behavior of a network is by no means intuitive, it becomes necessary to use computational models to understand its behavior and to be able to make predictions about it. Unfortunately, most current computational models describe small networks due to the scarcity of kinetic data available. To overcome this problem, we previously published a methodology to convert a signaling network into a dynamical system, even in the total absence of kinetic information. In this paper we present a software implementation of such methodology. RESULTS: We developed SQUAD, a software for the dynamic simulation of signaling networks using the standardized qualitative dynamical systems approach. SQUAD converts the network into a discrete dynamical system, and it uses a binary decision diagram algorithm to identify all the steady states of the system. Then, the software creates a continuous dynamical system and localizes its steady states which are located near the steady states of the discrete system. The software permits to make simulations on the continuous system, allowing for the modification of several parameters. Importantly, SQUAD includes a framework for perturbing networks in a manner similar to what is performed in experimental laboratory protocols, for example by activating receptors or knocking out molecular components. Using this software we have been able to successfully reproduce the behavior of the regulatory network implicated in T-helper cell differentiation. CONCLUSION: The simulation of regulatory networks aims at predicting the behavior of a whole system when subject to stimuli, such as drugs, or determine the role of specific components within the network. The predictions can then be used to interpret and/or drive laboratory experiments. SQUAD provides a user-friendly graphical interface, accessible to both computational and experimental biologists for the fast qualitative simulation of large regulatory networks for which kinetic data is not necessarily available.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the scale of a field site represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed downscaling procedure based on a non-linear Bayesian sequential simulation approach. The main objective of this algorithm is to estimate the value of the sparsely sampled hydraulic conductivity at non-sampled locations based on its relation to the electrical conductivity logged at collocated wells and surface resistivity measurements, which are available throughout the studied site. The in situ relationship between the hydraulic and electrical conductivities is described through a non-parametric multivariatekernel density function. Then a stochastic integration of low-resolution, large-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities is applied. The overall viability of this downscaling approach is tested and validated by comparing flow and transport simulation through the original and the upscaled hydraulic conductivity fields. Our results indicate that the proposed procedure allows obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present numerical simulations of continuous flow left ventricle assist device implantation with the aim of comparing difference in flow rates and pressure patterns depending on the location of the anastomosis and the rotational speed of the device. Despite the fact that the descending aorta anastomosis approach is less invasive, since it does not require a sternotomy and a cardiopulmonary bypass, its benefits are still controversial. Moreover, the device rotational speed should be correctly chosen to avoid anomalous flow rates and pressure distribution in specific location of the cardiovascular tree. With the aim of assessing the differences between these two approaches and device rotational speed in terms of flow rate and pressure waveforms, we set up numerical simulations of network of one-dimensional models where we account for the presence of an outflow cannula anastomosed to different locations of the aorta. Then, we use the resulting network to compare the results of the two different cannulations for several stages of heart failure and different rotational speed of the device. The inflow boundary data for the heart and the cannulas are obtained from a lumped parameters model of the entire circulatory system with an assist device, which is validated with clinical data. The results show that ascending and descending aorta cannulations lead to similar waveforms and mean flow rate in all the considered cases. Moreover, regardless of the anastomosis region, the rotational speed of the device has an important impact on wave profiles; this effect is more pronounced at high RPM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The identification of genetically homogeneous groups of individuals is a long standing issue in population genetics. A recent Bayesian algorithm implemented in the software STRUCTURE allows the identification of such groups. However, the ability of this algorithm to detect the true number of clusters (K) in a sample of individuals when patterns of dispersal among populations are not homogeneous has not been tested. The goal of this study is to carry out such tests, using various dispersal scenarios from data generated with an individual-based model. We found that in most cases the estimated 'log probability of data' does not provide a correct estimation of the number of clusters, K. However, using an ad hoc statistic DeltaK based on the rate of change in the log probability of data between successive K values, we found that STRUCTURE accurately detects the uppermost hierarchical level of structure for the scenarios we tested. As might be expected, the results are sensitive to the type of genetic marker used (AFLP vs. microsatellite), the number of loci scored, the number of populations sampled, and the number of individuals typed in each sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pharmacokinetic determinants of successful antibiotic prophylaxis of endocarditis are not precisely known. Differences in half-lives of antibiotics between animals and humans preclude extrapolation of animal results to human situations. To overcome this limitation, we have mimicked in rats the amoxicillin kinetics in humans following a 3-g oral dose (as often used for prophylaxis of endocarditis) by delivering the drug through a computerized pump. Rats with catheter-induced vegetations were challenged with either of two strains of antibiotic-tolerant viridans group streptococci. Antibiotics were given either through the pump (to simulate the whole kinetic profile during prophylaxis in humans) or as an intravenous bolus which imitated only the peak level of amoxicillin (18 mg/liter) in human serum. Prophylaxis by intravenous bolus was inoculum dependent and afforded a limited protection only in rats challenged with the minimum inoculum size infecting > or = 90% of untreated controls. In contrast, simulation of kinetics in humans significantly protected animals challenged with 10 to 100 times the inoculum of either of the test organisms infecting > or = 90% of untreated controls. Thus, simulation of the profiles of amoxicillin prophylaxis in human serum was more efficacious than mere imitation of the transient peak level in rats. This confirms previous studies suggesting that the duration for which the serum amoxicillin level remained detectable (not only the magnitude of the peak) was an important parameter in successful prophylaxis of endocarditis. The results also suggest that single-dose prophylaxis with 3 g of amoxicillin in humans might be more effective than predicted by conventional animal models in which only peak levels of antibiotic in human serum were stimulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the use of high frequency jet ventilation (HFJV) in patients undergoing percutanous thermal ablation procedures.Materials: From may to september 2011 patients with lung, liver or kidney tumors suitable for percutanous thermal ablation were prospectively enrolled to be treated under general anesthesia using HFJV instead of conventional positive pressure ventilation (PPV). Our primary endpoint was feasability of HFJV during percutanous ablation, our secondary endpoints were assessment of breathing related movements by image fusion (CT/US), precision and ease of needle placement by number of CT aquisition/needle reposition and procedure related complications.Results: Twenty-nine patients (21 males, 8 females mean age 66.2 years) with 30 liver tumors, 1 kidney tumors and 6 lung tumors were included. Tumor ablation was performed by radiofrequency (RFA) in 26 cases, microwaves ( MWA) in 2 and cryoablation (CRA) in 1. The ablation procedure could be completed under HFJV in 22 patients. In 2 patients HFVJ had to be stopped in favor of PPV because the tumor was better seen under PPV. HFJV was not performed in 5. Breathing related movements of the target lesion in the cranio-caudal direction as estimated by image fusion were always inferior to 5mm compared to 20mm when patients are under PPV. Needle placement was straightforward under CT as well as US. No patient needed needle repositionning before ablation. We did not observe any HFJV related complications.Conclusions: HFJV significantly reduces breathing movements of target lesion during percutaneous ablation procedures. It does not seem to cause any particular complication. However in some cases such as tumors located at the base of the lungs or in the dome of the liver, the target may be best seen under PPV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale for the purpose of improving predictions of groundwater flow and solute transport. However, extending corresponding approaches to the regional scale still represents one of the major challenges in the domain of hydrogeophysics. To address this problem, we have developed a regional-scale data integration methodology based on a two-step Bayesian sequential simulation approach. Our objective is to generate high-resolution stochastic realizations of the regional-scale hydraulic conductivity field in the common case where there exist spatially exhaustive but poorly resolved measurements of a related geophysical parameter, as well as highly resolved but spatially sparse collocated measurements of this geophysical parameter and the hydraulic conductivity. To integrate this multi-scale, multi-parameter database, we first link the low- and high-resolution geophysical data via a stochastic downscaling procedure. This is followed by relating the downscaled geophysical data to the high-resolution hydraulic conductivity distribution. After outlining the general methodology of the approach, we demonstrate its application to a realistic synthetic example where we consider as data high-resolution measurements of the hydraulic and electrical conductivities at a small number of borehole locations, as well as spatially exhaustive, low-resolution estimates of the electrical conductivity obtained from surface-based electrical resistivity tomography. The different stochastic realizations of the hydraulic conductivity field obtained using our procedure are validated by comparing their solute transport behaviour with that of the underlying ?true? hydraulic conductivity field. We find that, even in the presence of strong subsurface heterogeneity, our proposed procedure allows for the generation of faithful representations of the regional-scale hydraulic conductivity structure and reliable predictions of solute transport over long, regional-scale distances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Typically at dawn on a hot summer day, land plants need precise molecular thermometers to sense harmless increments in the ambient temperature to induce a timely heat shock response (HSR) and accumulate protective heat shock proteins in anticipation of harmful temperatures at mid-day. Here, we found that the cyclic nucleotide gated calcium channel (CNGC) CNGCb gene from Physcomitrella patens and its Arabidopsis thaliana ortholog CNGC2, encode a component of cyclic nucleotide gated Ca(2+) channels that act as the primary thermosensors of land plant cells. Disruption of CNGCb or CNGC2 produced a hyper-thermosensitive phenotype, giving rise to an HSR and acquired thermotolerance at significantly milder heat-priming treatments than in wild-type plants. In an aequorin-expressing moss, CNGCb loss-of-function caused a hyper-thermoresponsive Ca(2+) influx and altered Ca(2+) signaling. Patch clamp recordings on moss protoplasts showed the presence of three distinct thermoresponsive Ca(2+) channels in wild-type cells. Deletion of CNGCb led to a total absence of one and increased the open probability of the remaining two thermoresponsive Ca(2+) channels. Thus, CNGC2 and CNGCb are expected to form heteromeric Ca(2+) channels with other related CNGCs. These channels in the plasma membrane respond to increments in the ambient temperature by triggering an optimal HSR, leading to the onset of plant acquired thermotolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le modèle développé à l'Institut universitaire de médecine sociale et préventive de Lausanne utilise un programme informatique pour simuler les mouvements d'entrées et de sorties des hôpitaux de soins généraux. Cette simulation se fonde sur les données récoltées de routine dans les hôpitaux; elle tient notamment compte de certaines variations journalières et saisonnières, du nombre d'entrées, ainsi que du "Case-Mix" de l'hôpital, c'est-à-dire de la répartition des cas selon les groupes cliniques et l'âge des patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some years ago, a parish in Geneva decided to reduce heating costs by insulating its church to make it more energy efficient. Three years after the last renovations, it was observed that the internal surfaces of the naves had already become dusty compared with the customary frequency of 10-12 years. Dust even deposited on various surfaces during religious services. Our investigation showed that nearly all the dust found inside the church may in fact be soot from incense and candle combustion. Incense appears to be a significant source of polycyclic aromatic hydrocarbons. With a mechanical ventilation system and petrol lamps resembling candles the problem can be resolved.