17 resultados para Tethered satellites.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drosophila Decapentaplegic (Dpp) has served as a paradigm to study morphogen-dependent growth control. However, the role of a Dpp gradient in tissue growth remains highly controversial. Two fundamentally different models have been proposed: the 'temporal rule' model suggests that all cells of the wing imaginal disc divide upon a 50% increase in Dpp signalling, whereas the 'growth equalization model' suggests that Dpp is only essential for proliferation control of the central cells. Here, to discriminate between these two models, we generated and used morphotrap, a membrane-tethered anti-green fluorescent protein (GFP) nanobody, which enables immobilization of enhanced (e)GFP::Dpp on the cell surface, thereby abolishing Dpp gradient formation. We find that in the absence of Dpp spreading, wing disc patterning is lost; however, lateral cells still divide at normal rates. These data are consistent with the growth equalization model, but do not fit a global temporal rule model in the wing imaginal disc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The NG2(+) glia, also known as polydendrocytes or oligodendrocyte precursor cells, represent a new entity among glial cell populations in the central nervous system. However, the complete repertoire of their roles is not yet identified. The embryonic NG2(+) glia originate from the Nkx2.1(+) progenitors of the ventral telencephalon. Our analysis unravels that, beginning from E12.5 until E16.5, the NG2(+) glia populate the entire dorsal telencephalon. Interestingly, their appearance temporally coincides with the establishment of blood vessel network in the embryonic brain. NG2(+) glia are closely apposed to developing cerebral vessels by being either positioned at the sprouting tip cells or tethered along the vessel walls. Absence of NG2(+) glia drastically affects the vascular development leading to severe reduction of ramifications and connections by E18.5. By revealing a novel and fundamental role for NG2(+) glia, our study brings new perspectives to mechanisms underlying proper vessels network formation in embryonic brains.