42 resultados para Television -- Antennas -- Design and construction -- Data processing
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the scale of a field site represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed downscaling procedure based on a non-linear Bayesian sequential simulation approach. The main objective of this algorithm is to estimate the value of the sparsely sampled hydraulic conductivity at non-sampled locations based on its relation to the electrical conductivity logged at collocated wells and surface resistivity measurements, which are available throughout the studied site. The in situ relationship between the hydraulic and electrical conductivities is described through a non-parametric multivariatekernel density function. Then a stochastic integration of low-resolution, large-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities is applied. The overall viability of this downscaling approach is tested and validated by comparing flow and transport simulation through the original and the upscaled hydraulic conductivity fields. Our results indicate that the proposed procedure allows obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale for the purpose of improving predictions of groundwater flow and solute transport. However, extending corresponding approaches to the regional scale still represents one of the major challenges in the domain of hydrogeophysics. To address this problem, we have developed a regional-scale data integration methodology based on a two-step Bayesian sequential simulation approach. Our objective is to generate high-resolution stochastic realizations of the regional-scale hydraulic conductivity field in the common case where there exist spatially exhaustive but poorly resolved measurements of a related geophysical parameter, as well as highly resolved but spatially sparse collocated measurements of this geophysical parameter and the hydraulic conductivity. To integrate this multi-scale, multi-parameter database, we first link the low- and high-resolution geophysical data via a stochastic downscaling procedure. This is followed by relating the downscaled geophysical data to the high-resolution hydraulic conductivity distribution. After outlining the general methodology of the approach, we demonstrate its application to a realistic synthetic example where we consider as data high-resolution measurements of the hydraulic and electrical conductivities at a small number of borehole locations, as well as spatially exhaustive, low-resolution estimates of the electrical conductivity obtained from surface-based electrical resistivity tomography. The different stochastic realizations of the hydraulic conductivity field obtained using our procedure are validated by comparing their solute transport behaviour with that of the underlying ?true? hydraulic conductivity field. We find that, even in the presence of strong subsurface heterogeneity, our proposed procedure allows for the generation of faithful representations of the regional-scale hydraulic conductivity structure and reliable predictions of solute transport over long, regional-scale distances.
Resumo:
Brain perfusion can be assessed by CT and MR. For CT, two major techniques are used. First, Xenon CT is an equilibrium technique based on a freely diffusible tracer. First pass of iodinated contrast injected intravenously is a second method, more widely available. Both methods are proven to be robust and quantitative, thanks to the linear relationship between contrast concentration and x-ray attenuation. For the CT methods, concern regarding x-ray doses delivered to the patients need to be addressed. MR is also able to assess brain perfusion using the first pass of gadolinium based contrast agent injected intravenously. This method has to be considered as a semi-quantitative because of the non linear relationship between contrast concentration and MR signal changes. Arterial spin labeling is another MR method assessing brain perfusion without injection of contrast. In such case, the blood flow in the carotids is magnetically labelled by an external radiofrequency pulse and observed during its first pass through the brain. Each of this various CT and MR techniques have advantages and limits that will be illustrated and summarized.Learning Objectives:1. To understand and compare the different techniques for brain perfusion imaging.2. To learn about the methods of acquisition and post-processing of brain perfusion by first pass of contrast agent for CT and MR.3. To learn about non contrast MR methods (arterial spin labelling).
Resumo:
On 9 October 1963 a catastrophic landslide suddenly occurred on the southern slope of the Vaiont dam reservoir. A mass of approximately 270 million m3 collapsed into the reservoir generating a wave that overtopped the dam and hit the town of Longarone and other villages nearby. Several investigations and interpretations of the slope collapse have been carried out during the last 45 years, however, a comprehensive explanation of both the triggering and the dynamics of the phenomenon has yet to be provided. In order to re-evaluate the currently existing information on the slide, an electronic bibliographic database and an ESRI-geodatabase have been developed. The chronology of the collected documentation showed that most of the studies for re-evaluating the failure mechanisms were conducted in the last decade, as a consequence of knowledge, methods and techniques recently acquired. The current contents of the geodatabase will improve definition of the structural setting that influenced the slide and led to the the propagation of the displaced rock mass. The objectives, structure and contents of the e-bibliography and Geodatabase are indicated, together with a brief description on the possible use of the alphanumeric and spatial contents of the databases.
Resumo:
Validated in vitro methods for skin corrosion and irritation were adopted by the OECD and by the European Union during the last decade. In the EU, Switzerland and countries adopting the EU legislation, these assays may allow the full replacement of animal testing for identifying and classifying compounds as skin corrosives, skin irritants, and non irritants. In order to develop harmonised recommendations on the use of in vitro data for regulatory assessment purposes within the European framework, a workshop was organized by the Swiss Federal Office of Public Health together with ECVAM and the BfR. It comprised stakeholders from various European countries involved in the process from in vitro testing to the regulatory assessment of in vitro data. Discussions addressed the following questions: (1) the information requirements considered useful for regulatory assessment; (2) the applicability of in vitro skin corrosion data to assign the corrosive subcategories as implemented by the EU Classification, Labelling and Packaging Regulation; (3) the applicability of testing strategies for determining skin corrosion and irritation hazards; and (4) the applicability of the adopted in vitro assays to test mixtures, preparations and dilutions. Overall, a number of agreements and recommendations were achieved in order to clarify and facilitate the assessment and use of in vitro data from regulatory accepted methods, and ultimately help regulators and scientists facing with the new in vitro approaches to evaluate skin irritation and corrosion hazards and risks without animal data.
Resumo:
The geometry and connectivity of fractures exert a strong influence on the flow and transport properties of fracture networks. We present a novel approach to stochastically generate three-dimensional discrete networks of connected fractures that are conditioned to hydrological and geophysical data. A hierarchical rejection sampling algorithm is used to draw realizations from the posterior probability density function at different conditioning levels. The method is applied to a well-studied granitic formation using data acquired within two boreholes located 6 m apart. The prior models include 27 fractures with their geometry (position and orientation) bounded by information derived from single-hole ground-penetrating radar (GPR) data acquired during saline tracer tests and optical televiewer logs. Eleven cross-hole hydraulic connections between fractures in neighboring boreholes and the order in which the tracer arrives at different fractures are used for conditioning. Furthermore, the networks are conditioned to the observed relative hydraulic importance of the different hydraulic connections by numerically simulating the flow response. Among the conditioning data considered, constraints on the relative flow contributions were the most effective in determining the variability among the network realizations. Nevertheless, we find that the posterior model space is strongly determined by the imposed prior bounds. Strong prior bounds were derived from GPR measurements and helped to make the approach computationally feasible. We analyze a set of 230 posterior realizations that reproduce all data given their uncertainties assuming the same uniform transmissivity in all fractures. The posterior models provide valuable statistics on length scales and density of connected fractures, as well as their connectivity. In an additional analysis, effective transmissivity estimates of the posterior realizations indicate a strong influence of the DFN structure, in that it induces large variations of equivalent transmissivities between realizations. The transmissivity estimates agree well with previous estimates at the site based on pumping, flowmeter and temperature data.
Resumo:
Bacteria have long been the targets for genetic manipulation, but more recently they have been synthetically designed to carry out specific tasks. Among the simplest of these tasks is chemical compound and toxicity detection coupled to the production of a quantifiable reporter signal. In this Review, we describe the current design of bacterial bioreporters and their use in a range of assays to measure the presence of harmful chemicals in water, air, soil, food or biological specimens. New trends for integrating synthetic biology and microengineering into the design of bacterial bioreporter platforms are also highlighted.
Resumo:
Background: Understanding the true prevalence of lymphangioleiomyomatosis (LAM) is important in estimating disease burden and targeting specific interventions. As with all rare diseases, obtaining reliable epidemiological data is difficult and requires innovative approaches.Aim: To determine the prevalence and incidence of LAM using data from patient organizations in seven countries, and to use the extent to which the prevalence of LAM varies regionally and nationally to determine whether prevalence estimates are related to health-care provision.Methods: Numbers of women with LAM were obtained from patient groups and national databases from seven countries (n = 1001). Prevalence was calculated for regions within countries using female population figures from census data. Incidence estimates were calculated for the USA, UK and Switzerland. Regional variation in prevalence and changes in incidence over time were analysed using Poisson regression and linear regression.Results: Prevalence of LAM in the seven countries ranged from 3.4 to 7.8/million women with significant variation, both between countries and between states in the USA. This variation did not relate to the number of pulmonary specialists in the region nor the percentage of population with health insurance, but suggests a large number of patients remain undiagnosed. The incidence of LAM from 2004 to 2008 ranged from 0.23 to 0.31/million women/per year in the USA, UK and Switzerland.Conclusions: Using this method, we have found that the prevalence of LAM is higher than that previously recorded and that many patients with LAM are undiagnosed.
Resumo:
Structural analysis of low-grade rocks highlights the allochthonous character of Mesozoic schists in southeastern Rhodope, Bulgaria. The deformation can be related to the Late Jurassic-Early Cretaceous thrusting and Tertiary detachment faulting. Petrologic and geochemical data show a volcanic arc origin of the greenschists and basaltic rocks. These results are interpreted as representing an island arc-accretionary complex related to the southward subduction of the Meliata-Maliac Ocean under the supra-subduction back-arc Vardar ocean/island arc system. This arc-trench system collided with the Rhodope in Late Jurassic times. (C) 2003 Academie des sciences. Published by Editions scientifiques et medicales Elsevier SAS. All rights reserved.
Resumo:
Les décisions de gestion des eaux souterraines doivent souvent être justiffées par des modèles quantitatifs d'aquifères qui tiennent compte de l'hétérogénéité des propriétés hydrauliques. Les aquifères fracturés sont parmi les plus hétérogènes et très difficiles à étudier. Dans ceux-ci, les fractures connectées, d'ouverture millimètrique, peuvent agir comme conducteurs hydrauliques et donc créer des écoulements très localisés. Le manque général d'informations sur la distribution spatiale des fractures limite la possibilité de construire des modèles quantitatifs de flux et de transport. Les données qui conditionnent les modèles sont généralement spatialement limitées, bruitées et elles ne représentent que des mesures indirectes de propriétés physiques. Ces limitations aux données peuvent être en partie surmontées en combinant différents types de données, telles que les données hydrologiques et de radar à pénétration de sol plus commun ément appelé géoradar. L'utilisation du géoradar en forage est un outil prometteur pour identiffer les fractures individuelles jusqu'à quelques dizaines de mètres dans la formation. Dans cette thèse, je développe des approches pour combiner le géoradar avec les données hydrologiques affn d'améliorer la caractérisation des aquifères fracturés. Des investigations hydrologiques intensives ont déjà été réalisées à partir de trois forage adjacents dans un aquifère cristallin en Bretagne (France). Néanmoins, la dimension des fractures et la géométrie 3-D des fractures conductives restaient mal connue. Affn d'améliorer la caractérisation du réseau de fractures je propose dans un premier temps un traitement géoradar avancé qui permet l'imagerie des fractures individuellement. Les résultats montrent que les fractures perméables précédemment identiffées dans les forages peuvent être caractérisées géométriquement loin du forage et que les fractures qui ne croisent pas les forages peuvent aussi être identiffées. Les résultats d'une deuxième étude montrent que les données géoradar peuvent suivre le transport d'un traceur salin. Ainsi, les fractures qui font partie du réseau conductif et connecté qui dominent l'écoulement et le transport local sont identiffées. C'est la première fois que le transport d'un traceur salin a pu être imagé sur une dizaines de mètres dans des fractures individuelles. Une troisième étude conffrme ces résultats par des expériences répétées et des essais de traçage supplémentaires dans différentes parties du réseau local. En outre, la combinaison des données de surveillance hydrologique et géoradar fournit la preuve que les variations temporelles d'amplitude des signaux géoradar peuvent nous informer sur les changements relatifs de concentrations de traceurs dans la formation. Par conséquent, les données géoradar et hydrologiques sont complémentaires. Je propose ensuite une approche d'inversion stochastique pour générer des modèles 3-D de fractures discrètes qui sont conditionnés à toutes les données disponibles en respectant leurs incertitudes. La génération stochastique des modèles conditionnés par géoradar est capable de reproduire les connexions hydrauliques observées et leur contribution aux écoulements. L'ensemble des modèles conditionnés fournit des estimations quantitatives des dimensions et de l'organisation spatiale des fractures hydrauliquement importantes. Cette thèse montre clairement que l'imagerie géoradar est un outil utile pour caractériser les fractures. La combinaison de mesures géoradar avec des données hydrologiques permet de conditionner avec succès le réseau de fractures et de fournir des modèles quantitatifs. Les approches présentées peuvent être appliquées dans d'autres types de formations rocheuses fracturées où la roche est électriquement résistive.