21 resultados para Support Decision System
Resumo:
Fluvial deposits are a challenge for modelling flow in sub-surface reservoirs. Connectivity and continuity of permeable bodies have a major impact on fluid flow in porous media. Contemporary object-based and multipoint statistics methods face a problem of robust representation of connected structures. An alternative approach to model petrophysical properties is based on machine learning algorithm ? Support Vector Regression (SVR). Semi-supervised SVR is able to establish spatial connectivity taking into account the prior knowledge on natural similarities. SVR as a learning algorithm is robust to noise and captures dependencies from all available data. Semi-supervised SVR applied to a synthetic fluvial reservoir demonstrated robust results, which are well matched to the flow performance
Resumo:
A mobile ad hoc network (MANET) is a decentralized and infrastructure-less network. This thesis aims to provide support at the system-level for developers of applications or protocols in such networks. To do this, we propose contributions in both the algorithmic realm and in the practical realm. In the algorithmic realm, we contribute to the field by proposing different context-aware broadcast and multicast algorithms in MANETs, namely six-shot broadcast, six-shot multicast, PLAN-B and ageneric algorithmic approach to optimize the power consumption of existing algorithms. For each algorithm we propose, we compare it to existing algorithms that are either probabilistic or context-aware, and then we evaluate their performance based on simulations. We demonstrate that in some cases, context-aware information, such as location or signal-strength, can improve the effciency. In the practical realm, we propose a testbed framework, namely ManetLab, to implement and to deploy MANET-specific protocols, and to evaluate their performance. This testbed framework aims to increase the accuracy of performance evaluation compared to simulations, while keeping the ease of use offered by the simulators to reproduce a performance evaluation. By evaluating the performance of different probabilistic algorithms with ManetLab, we observe that both simulations and testbeds should be used in a complementary way. In addition to the above original contributions, we also provide two surveys about system-level support for ad hoc communications in order to establish a state of the art. The first is about existing broadcast algorithms and the second is about existing middleware solutions and the way they deal with privacy and especially with location privacy. - Un réseau mobile ad hoc (MANET) est un réseau avec une architecture décentralisée et sans infrastructure. Cette thèse vise à fournir un support adéquat, au niveau système, aux développeurs d'applications ou de protocoles dans de tels réseaux. Dans ce but, nous proposons des contributions à la fois dans le domaine de l'algorithmique et dans celui de la pratique. Nous contribuons au domaine algorithmique en proposant différents algorithmes de diffusion dans les MANETs, algorithmes qui sont sensibles au contexte, à savoir six-shot broadcast,six-shot multicast, PLAN-B ainsi qu'une approche générique permettant d'optimiser la consommation d'énergie de ces algorithmes. Pour chaque algorithme que nous proposons, nous le comparons à des algorithmes existants qui sont soit probabilistes, soit sensibles au contexte, puis nous évaluons leurs performances sur la base de simulations. Nous montrons que, dans certains cas, des informations liées au contexte, telles que la localisation ou l'intensité du signal, peuvent améliorer l'efficience de ces algorithmes. Sur le plan pratique, nous proposons une plateforme logicielle pour la création de bancs d'essai, intitulé ManetLab, permettant d'implémenter, et de déployer des protocoles spécifiques aux MANETs, de sorte à évaluer leur performance. Cet outil logiciel vise à accroître la précision desévaluations de performance comparativement à celles fournies par des simulations, tout en conservant la facilité d'utilisation offerte par les simulateurs pour reproduire uneévaluation de performance. En évaluant les performances de différents algorithmes probabilistes avec ManetLab, nous observons que simulateurs et bancs d'essai doivent être utilisés de manière complémentaire. En plus de ces contributions principales, nous fournissons également deux états de l'art au sujet du support nécessaire pour les communications ad hoc. Le premier porte sur les algorithmes de diffusion existants et le second sur les solutions de type middleware existantes et la façon dont elles traitent de la confidentialité, en particulier celle de la localisation.
Resumo:
Extracorporeal life support systems (ECLS) have become common in cardiothoracic surgery, but are still "Terra Incognita" in other medical fields due to the fact that perfusion units are normally bound to cardiothoracic centres. The Lifebridge B2T is an ECLS that is meant to be used as an easy and fast-track extracorporeal cardiac support to provide short-term perfusion for the transport of a patient to a specialized centre. With the Lifebridge B2T it is now possible to provide extracorporeal bypass for patients in hospitals without a perfusion unit. The Lifebridge B2T was tested on three calves to analyze the handling, performance and security of this system. The Lifebridge B2T safely can be used clinically and can provide full extracorporeal support for patients in cardiac or pulmonary failure. Flows up to 3.9 +/- 0.2l/min were reached, with an inflow pressure of -103 +/- 13mmHg, using a 21Fr. BioMedicus (Medtronic, Minneapolis, MN, USA) venous cannula. The "Plug and Play" philosophy, with semi-automatic priming, integrated check-list, a long battery time of over two hours and instinctively designed user interface, makes this device very interesting for units with high-risk interventions, such as catheterisation labs. If a system is necessary in an emergency unit, the Lifebridge can provide a high security level, even in centres not acquainted with cardiopulmonary bypass.
Resumo:
The decision-making process regarding drug dose, regularly used in everyday medical practice, is critical to patients' health and recovery. It is a challenging process, especially for a drug with narrow therapeutic ranges, in which a medical doctor decides the quantity (dose amount) and frequency (dose interval) on the basis of a set of available patient features and doctor's clinical experience (a priori adaptation). Computer support in drug dose administration makes the prescription procedure faster, more accurate, objective, and less expensive, with a tendency to reduce the number of invasive procedures. This paper presents an advanced integrated Drug Administration Decision Support System (DADSS) to help clinicians/patients with the dose computing. Based on a support vector machine (SVM) algorithm, enhanced with the random sample consensus technique, this system is able to predict the drug concentration values and computes the ideal dose amount and dose interval for a new patient. With an extension to combine the SVM method and the explicit analytical model, the advanced integrated DADSS system is able to compute drug concentration-to-time curves for a patient under different conditions. A feedback loop is enabled to update the curve with a new measured concentration value to make it more personalized (a posteriori adaptation).