21 resultados para Supermultiplicative graphs
Resumo:
Although increasing our knowledge of the properties of networks of cities is essential, these properties can be measured at the city level, and must be assessed by analyzing actor networks. The present volume focuses less on individual characteristics and more on the interactions of actors and institutions that create functional territories in which the structure of existing links constrains emerging links. Rather than basing explanations on external factors, the goal is to determine the extent to which network properties reflect spatial distributions and create local synergies at the meso level that are incorporated into global networks at the macro level where different geographical scales occur. The paper introduces the way to use the graphs structure to identify empirically relevant groups and levels that explain dynamics. It defines what could be called âeurooemulti-levelâeuro, âeurooemulti-scaleâeuro, or âeurooemultidimensionalâeuro networks in the context of urban geography. It explains how the convergence of the network multi-territoriality paradigm collaboratively formulated, and manipulated by geographers and computer scientists produced the SPANGEO project, which is exposed in this volume.
Resumo:
OBJECTIVE: To evaluate if heroin and cocaine can be distinguished using dual-energy CT. MATERIALS AND METHODS: Twenty samples of heroin and cocaine at different concentrations and standardized compression (SC) were scanned in dual-energy mode on a newest generation Dual Energy 64-row MDCT scanner. CT number, spectral graphs, and dual-energy index (DEI) were evaluated. Results were prospectively tested on six original samples from a body packer. Wilcoxon's test was used for statistical evaluation. RESULTS: Values are given as median and range. Under SC, the CT number of cocaine samples (-29.87 Hounsfield unit (HU) [-125.85; 16.16 HU]) was higher than the CT number of heroin samples (-184.37 HU [-199.81; -159.25 HU]; p < 0.01). Slope of spectral curves for cocaine was -2.36 HU/keV [-7.15; -0.67 HU/keV], and for heroin, 1.75 HU/keV [1.28; 2.5 HU/keV] (p < 0.01). DEI was 0.0352 [0.0081; 0.0528] for cocaine and significantly higher than for heroin samples (-0.0127 [-0.0097; -0.0159]; p < 0.001). While CT number was inconclusive, all six original packs were correctly classified after evaluation of the spectral curve and DEI. In contrast to the CT number, slope of the spectral curve and DEI were independent of concentration and compression. CONCLUSION: The slope of the spectral curve and the DEI from dual-energy CT data can be used to distinguish heroin and cocaine in vitro; these results are independent of compression and concentration in the measured range.
Resumo:
We propose a compressive sensing algorithm that exploits geometric properties of images to recover images of high quality from few measurements. The image reconstruction is done by iterating the two following steps: 1) estimation of normal vectors of the image level curves, and 2) reconstruction of an image fitting the normal vectors, the compressed sensing measurements, and the sparsity constraint. The proposed technique can naturally extend to nonlocal operators and graphs to exploit the repetitive nature of textured images to recover fine detail structures. In both cases, the problem is reduced to a series of convex minimization problems that can be efficiently solved with a combination of variable splitting and augmented Lagrangian methods, leading to fast and easy-to-code algorithms. Extended experiments show a clear improvement over related state-of-the-art algorithms in the quality of the reconstructed images and the robustness of the proposed method to noise, different kind of images, and reduced measurements.
Resumo:
Abstract The main objective of this work is to show how the choice of the temporal dimension and of the spatial structure of the population influences an artificial evolutionary process. In the field of Artificial Evolution we can observe a common trend in synchronously evolv¬ing panmictic populations, i.e., populations in which any individual can be recombined with any other individual. Already in the '90s, the works of Spiessens and Manderick, Sarma and De Jong, and Gorges-Schleuter have pointed out that, if a population is struc¬tured according to a mono- or bi-dimensional regular lattice, the evolutionary process shows a different dynamic with respect to the panmictic case. In particular, Sarma and De Jong have studied the selection pressure (i.e., the diffusion of a best individual when the only selection operator is active) induced by a regular bi-dimensional structure of the population, proposing a logistic modeling of the selection pressure curves. This model supposes that the diffusion of a best individual in a population follows an exponential law. We show that such a model is inadequate to describe the process, since the growth speed must be quadratic or sub-quadratic in the case of a bi-dimensional regular lattice. New linear and sub-quadratic models are proposed for modeling the selection pressure curves in, respectively, mono- and bi-dimensional regu¬lar structures. These models are extended to describe the process when asynchronous evolutions are employed. Different dynamics of the populations imply different search strategies of the resulting algorithm, when the evolutionary process is used to solve optimisation problems. A benchmark of both discrete and continuous test problems is used to study the search characteristics of the different topologies and updates of the populations. In the last decade, the pioneering studies of Watts and Strogatz have shown that most real networks, both in the biological and sociological worlds as well as in man-made structures, have mathematical properties that set them apart from regular and random structures. In particular, they introduced the concepts of small-world graphs, and they showed that this new family of structures has interesting computing capabilities. Populations structured according to these new topologies are proposed, and their evolutionary dynamics are studied and modeled. We also propose asynchronous evolutions for these structures, and the resulting evolutionary behaviors are investigated. Many man-made networks have grown, and are still growing incrementally, and explanations have been proposed for their actual shape, such as Albert and Barabasi's preferential attachment growth rule. However, many actual networks seem to have undergone some kind of Darwinian variation and selection. Thus, how these networks might have come to be selected is an interesting yet unanswered question. In the last part of this work, we show how a simple evolutionary algorithm can enable the emrgence o these kinds of structures for two prototypical problems of the automata networks world, the majority classification and the synchronisation problems. Synopsis L'objectif principal de ce travail est de montrer l'influence du choix de la dimension temporelle et de la structure spatiale d'une population sur un processus évolutionnaire artificiel. Dans le domaine de l'Evolution Artificielle on peut observer une tendence à évoluer d'une façon synchrone des populations panmictiques, où chaque individu peut être récombiné avec tout autre individu dans la population. Déjà dans les année '90, Spiessens et Manderick, Sarma et De Jong, et Gorges-Schleuter ont observé que, si une population possède une structure régulière mono- ou bi-dimensionnelle, le processus évolutionnaire montre une dynamique différente de celle d'une population panmictique. En particulier, Sarma et De Jong ont étudié la pression de sélection (c-à-d la diffusion d'un individu optimal quand seul l'opérateur de sélection est actif) induite par une structure régulière bi-dimensionnelle de la population, proposant une modélisation logistique des courbes de pression de sélection. Ce modèle suppose que la diffusion d'un individu optimal suit une loi exponentielle. On montre que ce modèle est inadéquat pour décrire ce phénomène, étant donné que la vitesse de croissance doit obéir à une loi quadratique ou sous-quadratique dans le cas d'une structure régulière bi-dimensionnelle. De nouveaux modèles linéaires et sous-quadratique sont proposés pour des structures mono- et bi-dimensionnelles. Ces modèles sont étendus pour décrire des processus évolutionnaires asynchrones. Différentes dynamiques de la population impliquent strategies différentes de recherche de l'algorithme résultant lorsque le processus évolutionnaire est utilisé pour résoudre des problèmes d'optimisation. Un ensemble de problèmes discrets et continus est utilisé pour étudier les charactéristiques de recherche des différentes topologies et mises à jour des populations. Ces dernières années, les études de Watts et Strogatz ont montré que beaucoup de réseaux, aussi bien dans les mondes biologiques et sociologiques que dans les structures produites par l'homme, ont des propriétés mathématiques qui les séparent à la fois des structures régulières et des structures aléatoires. En particulier, ils ont introduit la notion de graphe sm,all-world et ont montré que cette nouvelle famille de structures possède des intéressantes propriétés dynamiques. Des populations ayant ces nouvelles topologies sont proposés, et leurs dynamiques évolutionnaires sont étudiées et modélisées. Pour des populations ayant ces structures, des méthodes d'évolution asynchrone sont proposées, et la dynamique résultante est étudiée. Beaucoup de réseaux produits par l'homme se sont formés d'une façon incrémentale, et des explications pour leur forme actuelle ont été proposées, comme le preferential attachment de Albert et Barabàsi. Toutefois, beaucoup de réseaux existants doivent être le produit d'un processus de variation et sélection darwiniennes. Ainsi, la façon dont ces structures ont pu être sélectionnées est une question intéressante restée sans réponse. Dans la dernière partie de ce travail, on montre comment un simple processus évolutif artificiel permet à ce type de topologies d'émerger dans le cas de deux problèmes prototypiques des réseaux d'automates, les tâches de densité et de synchronisation.
Resumo:
The introduction of time-series graphs into British economics in the 19th century depended on the « timing » of history. This involved reconceptualizing history into events which were both comparable and measurable and standardized by time unit. Yet classical economists in Britain in the early 19th century viewed history as a set of heterogenous and complex events and statistical tables as giving unrelated facts. Both these attitudes had to be broken down before time-series graphs could be brought into use for revealing regularities in economic events by the century's end.