79 resultados para Sulfate ferreux--Pacifique Nord
Resumo:
Background: Sulfate and phosphate are both vital macronutrients required for plant growth and development. Despite evidence for interaction between sulfate and phosphate homeostasis, no transcriptional factor has yet been identified in higher plants that affects, at the gene expression and physiological levels, the response to both elements. This work was aimed at examining whether PHR1, a transcription factor previously shown to participate in the regulation of genes involved in phosphate homeostasis, also contributed to the regulation and activity of genes involved in sulfate inter-organ transport. Results: Among the genes implicated in sulfate transport in Arabidopsis thaliana, SULTR1;3 and SULTR3;4 showed up-regulation of transcripts in plants grown under phosphate-deficient conditions. The promoter of SULTR1;3 contains a motif that is potentially recognizable by PHR1. Using the phr1 mutant, we showed that SULTR1;3 up regulation following phosphate deficiency was dependent on PHR1. Furthermore, transcript up regulation was found in phosphate-deficient shoots of the phr1 mutant for SULTR2;1 and SULTR3;4, indicating that PHR1 played both a positive and negative role on the expression of genes encoding sulfate transporters. Importantly, both phr1 and sultr1;3 mutants displayed a reduction in their sulfate shoot-to-root transfer capacity compared to wild-type plants under phosphate-deficient conditions. Conclusions: This study reveals that PHR1 plays an important role in sulfate inter-organ transport, in particular on the regulation of the SULTR1;3 gene and its impact on shoot-to-root sulfate transport in phosphate-deficient plants. PHR1 thus contributes to the homeostasis of both sulfate and phosphate in plants under phosphate deficiency. Such a function is also conserved in Chlamydomonas reinhardtii via the PHR1 ortholog PSR1.
Resumo:
19-Norandrosterone (19-NA) as its glucuronide derivative is the target metabolite in anti-doping testing to reveal an abuse of nandrolone or nandrolone prohormone. To provide further evidence of a doping with these steroids, the sulfoconjugate form of 19-norandrosterone in human urine might be monitored as well. In the present study, the profiling of sulfate and glucuronide derivatives of 19-norandrosterone together with 19-noretiocholanolone (19-NE) were assessed in the spot urines of 8 male subjects, collected after administration of 19-nor-4-androstenedione (100mg). An LC/MS/MS assay was employed for the direct quantification of sulfoconjugates, whereas a standard GC/MS method was applied for the assessment of glucuroconjugates in urine specimens. Although the 19-NA glucuronide derivative was always the most prominent at the excretion peak, inter-individual variability of the excretion patterns was observed for both conjugate forms of 19-NA and 19-NE. The ratio between the glucuro- and sulfoconjugate derivatives of 19-NA and 19-NE could not discriminate the endogenous versus the exogenous origin of the parent compound. However, after ingestion of 100mg 19-nor-4-androstenedione, it was observed in the urine specimens that the sulfate conjugates of 19-NA was detectable over a longer period of time with respect to the other metabolites. These findings indicate that more interest shall be given to this type of conjugation to deter a potential doping with norsteroids.
Resumo:
Tonoplast-enriched membranes were prepared from maize (Zea mays L. cv LG 11) primary roots, using sucrose nonlinear gradients. The functional molecular size of the tonoplast ATP-and PPi-dependent proton pumps were analyzed by radiation inactivation. Glucose-6-phosphate dehydrogenase (G6PDH) was added as an internal standard. Frozen samples (-196 degrees C) of the membranes were irradiated with (60)Co for different periods of time. After thawing the samples, the activities of G6PDH, ATPase, and PPase were tested. By applying target theory, the functional sizes of the ATPase and PPase in situ were found to be around 540 and 160 kilodaltons, respectively. The two activities were solubilized and separated by gel filtration chromatography. The different polypeptides copurifying with the two pumps were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Two bands (around 59 and 65 kilodaltons) were associated with the ATPase activity, whereas a double band (around 40 kilodaltons) was recovered with the PPase activity.
Resumo:
Glypicans are a family of glycosylphosphatidylinositol (GPI)-anchored, membrane-bound heparan sulfate (HS) proteoglycans. Their biological roles are only partly understood, although it is assumed that they modulate the activity of HS-binding growth factors. The involvement of glypicans in developmental morphogenesis and growth regulation has been highlighted by Drosophila mutants and by a human overgrowth syndrome with multiple malformations caused by glypican 3 mutations (Simpson-Golabi-Behmel syndrome). We now report that autosomal-recessive omodysplasia, a genetic condition characterized by short-limbed short stature, craniofacial dysmorphism, and variable developmental delay, maps to chromosome 13 (13q31.1-q32.2) and is caused by point mutations or by larger genomic rearrangements in glypican 6 (GPC6). All mutations cause truncation of the GPC6 protein and abolish both the HS-binding site and the GPI-bearing membrane-associated domain, and thus loss of function is predicted. Expression studies in microdissected mouse growth plate revealed expression of Gpc6 in proliferative chondrocytes. Thus, GPC6 seems to have a previously unsuspected role in endochondral ossification and skeletal growth, and its functional abrogation results in a short-limb phenotype.
Resumo:
The molecular mechanisms regulating the initial uptake of inorganic sulfate in plants are still largely unknown. The current model for the regulation of sulfate uptake and assimilation attributes positive and negative regulatory roles to O-acetyl-serine (O-acetyl-Ser) and glutathione, respectively. This model seems to suffer from exceptions and it has not yet been clearly validated whether intracellular O-acetyl-Ser and glutathione levels have impacts on regulation. The transcript level of the two high-affinity sulfate transporters SULTR1.1 and SULTR1.2 responsible for sulfate uptake from the soil solution was compared to the intracellular contents of O-acetyl-Ser, glutathione, and sulfate in roots of plants submitted to a wide diversity of experimental conditions. SULTR1.1 and SULTR1.2 were differentially expressed and neither of the genes was regulated in accordance with the current model. The SULTR1.1 transcript level was mainly altered in response to the sulfur-related treatments. Split-root experiments show that the expression of SULTR1.1 is locally regulated in response to sulfate starvation. In contrast, accumulation of SULTR1.2 transcripts appeared to be mainly related to metabolic demand and is controlled by photoperiod. On the basis of the new molecular insights provided in this study, we suggest that the expression of the two transporters depends on different regulatory networks. We hypothesize that interplay between SULTR1.1 and SULTR1.2 transporters could be an important mechanism to regulate sulfate content in the roots
Resumo:
Osteoarthritis (OA) is one of the major causes of pain and of outpatient's clinics. 15 years ago, physiopathology of OA and its potential therapeutic targets were announced to be better understood, but the results of therapeutic trials were finally not as convincing as expected. Slow Acting Drugs (SADs) are part of the treatments evaluated in OA. Even if evidence based medicine is low, positive effects of SADs have been observed. We can reasonably propose these treatments for a short test period. It can sometimes enable us to decrease the dosage of others treatment such as NSAIDs. In any case, the physician must properly inform the patient about products available in Switzerland and must be aware of degrees of purity and costs of the products available on the intemet.