65 resultados para Subfractals, Subfractal Coding, Model Analysis, Digital Imaging, Pattern Recognition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new non parametric atlas registration framework, derived from the optical flow model and the active contour theory, applied to automatic subthalamic nucleus (STN) targeting in deep brain stimulation (DBS) surgery. In a previous work, we demonstrated that the STN position can be predicted based on the position of surrounding visible structures, namely the lateral and third ventricles. A STN targeting process can thus be obtained by registering these structures of interest between a brain atlas and the patient image. Here we aim to improve the results of the state of the art targeting methods and at the same time to reduce the computational time. Our simultaneous segmentation and registration model shows mean STN localization errors statistically similar to the most performing registration algorithms tested so far and to the targeting expert's variability. Moreover, the computational time of our registration method is much lower, which is a worthwhile improvement from a clinical point of view.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: : To determine the influence of nebulizer types and nebulization modes on bronchodilator delivery in a mechanically ventilated pediatric lung model. DESIGN: : In vitro, laboratory study. SETTING: : Research laboratory of a university hospital. INTERVENTIONS: : Using albuterol as a marker, three nebulizer types (jet nebulizer, ultrasonic nebulizer, and vibrating-mesh nebulizer) were tested in three nebulization modes in a nonhumidified bench model mimicking the ventilatory pattern of a 10-kg infant. The amounts of albuterol deposited on the inspiratory filters (inhaled drug) at the end of the endotracheal tube, on the expiratory filters, and remaining in the nebulizers or in the ventilator circuit were determined. Particle size distribution of the nebulizers was also measured. MEASUREMENTS AND MAIN RESULTS: : The inhaled drug was 2.8% ± 0.5% for the jet nebulizer, 10.5% ± 2.3% for the ultrasonic nebulizer, and 5.4% ± 2.7% for the vibrating-mesh nebulizer in intermittent nebulization during the inspiratory phase (p < 0.01). The most efficient nebulizer was the vibrating-mesh nebulizer in continuous nebulization (13.3% ± 4.6%, p < 0.01). Depending on the nebulizers, a variable but important part of albuterol was observed as remaining in the nebulizers (jet and ultrasonic nebulizers), or being expired or lost in the ventilator circuit (all nebulizers). Only small particles (range 2.39-2.70 µm) reached the end of the endotracheal tube. CONCLUSIONS: : Important differences between nebulizer types and nebulization modes were seen for albuterol deposition at the end of the endotracheal tube in an in vitro pediatric ventilator-lung model. New aerosol devices, such as ultrasonic and vibrating-mesh nebulizers, were more efficient than the jet nebulizer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The investigation of perceptual and cognitive functions with non-invasive brain imaging methods critically depends on the careful selection of stimuli for use in experiments. For example, it must be verified that any observed effects follow from the parameter of interest (e.g. semantic category) rather than other low-level physical features (e.g. luminance, or spectral properties). Otherwise, interpretation of results is confounded. Often, researchers circumvent this issue by including additional control conditions or tasks, both of which are flawed and also prolong experiments. Here, we present some new approaches for controlling classes of stimuli intended for use in cognitive neuroscience, however these methods can be readily extrapolated to other applications and stimulus modalities. Our approach is comprised of two levels. The first level aims at equalizing individual stimuli in terms of their mean luminance. Each data point in the stimulus is adjusted to a standardized value based on a standard value across the stimulus battery. The second level analyzes two populations of stimuli along their spectral properties (i.e. spatial frequency) using a dissimilarity metric that equals the root mean square of the distance between two populations of objects as a function of spatial frequency along x- and y-dimensions of the image. Randomized permutations are used to obtain a minimal value between the populations to minimize, in a completely data-driven manner, the spectral differences between image sets. While another paper in this issue applies these methods in the case of acoustic stimuli (Aeschlimann et al., Brain Topogr 2008), we illustrate this approach here in detail for complex visual stimuli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Specific properties emerge from the structure of large networks, such as that of worldwide air traffic, including a highly hierarchical node structure and multi-level small world sub-groups that strongly influence future dynamics. We have developed clustering methods to understand the form of these structures, to identify structural properties, and to evaluate the effects of these properties. Graph clustering methods are often constructed from different components: a metric, a clustering index, and a modularity measure to assess the quality of a clustering method. To understand the impact of each of these components on the clustering method, we explore and compare different combinations. These different combinations are used to compare multilevel clustering methods to delineate the effects of geographical distance, hubs, network densities, and bridges on worldwide air passenger traffic. The ultimate goal of this methodological research is to demonstrate evidence of combined effects in the development of an air traffic network. In fact, the network can be divided into different levels of âeurooecohesionâeuro, which can be qualified and measured by comparative studies (Newman, 2002; Guimera et al., 2005; Sales-Pardo et al., 2007).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The widespread use of digital imaging devices for surveillance (CCTV) and entertainment (e.g., mobile phones, compact cameras) has increased the number of images recorded and opportunities to consider the images as traces or documentation of criminal activity. The forensic science literature focuses almost exclusively on technical issues and evidence assessment [1]. Earlier steps in the investigation phase have been neglected and must be considered. This article is the first comprehensive description of a methodology to event reconstruction using images. This formal methodology was conceptualised from practical experiences and applied to different contexts and case studies to test and refine it. Based on this practical analysis, we propose a systematic approach that includes a preliminary analysis followed by four main steps. These steps form a sequence for which the results from each step rely on the previous step. However, the methodology is not linear, but it is a cyclic, iterative progression for obtaining knowledge about an event. The preliminary analysis is a pre-evaluation phase, wherein potential relevance of images is assessed. In the first step, images are detected and collected as pertinent trace material; the second step involves organising and assessing their quality and informative potential. The third step includes reconstruction using clues about space, time and actions. Finally, in the fourth step, the images are evaluated and selected as evidence. These steps are described and illustrated using practical examples. The paper outlines how images elicit information about persons, objects, space, time and actions throughout the investigation process to reconstruct an event step by step. We emphasise the hypothetico-deductive reasoning framework, which demonstrates the contribution of images to generating, refining or eliminating propositions or hypotheses. This methodology provides a sound basis for extending image use as evidence and, more generally, as clues in investigation and crime reconstruction processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hidden Markov models (HMMs) are probabilistic models that are well adapted to many tasks in bioinformatics, for example, for predicting the occurrence of specific motifs in biological sequences. MAMOT is a command-line program for Unix-like operating systems, including MacOS X, that we developed to allow scientists to apply HMMs more easily in their research. One can define the architecture and initial parameters of the model in a text file and then use MAMOT for parameter optimization on example data, decoding (like predicting motif occurrence in sequences) and the production of stochastic sequences generated according to the probabilistic model. Two examples for which models are provided are coiled-coil domains in protein sequences and protein binding sites in DNA. A wealth of useful features include the use of pseudocounts, state tying and fixing of selected parameters in learning, and the inclusion of prior probabilities in decoding. AVAILABILITY: MAMOT is implemented in C++, and is distributed under the GNU General Public Licence (GPL). The software, documentation, and example model files can be found at http://bcf.isb-sib.ch/mamot

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a method for segmenting white matter tracts from high angular resolution diffusion MR. images by representing the data in a 5 dimensional space of position and orientation. Whereas crossing fiber tracts cannot be separated in 3D position space, they clearly disentangle in 5D position-orientation space. The segmentation is done using a 5D level set method applied to hyper-surfaces evolving in 5D position-orientation space. In this paper we present a methodology for constructing the position-orientation space. We then show how to implement the standard level set method in such a non-Euclidean high dimensional space. The level set theory is basically defined for N-dimensions but there are several practical implementation details to consider, such as mean curvature. Finally, we will show results from a synthetic model and a few preliminary results on real data of a human brain acquired by high angular resolution diffusion MRI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaluation of segmentation methods is a crucial aspect in image processing, especially in the medical imaging field, where small differences between segmented regions in the anatomy can be of paramount importance. Usually, segmentation evaluation is based on a measure that depends on the number of segmented voxels inside and outside of some reference regions that are called gold standards. Although some other measures have been also used, in this work we propose a set of new similarity measures, based on different features, such as the location and intensity values of the misclassified voxels, and the connectivity and the boundaries of the segmented data. Using the multidimensional information provided by these measures, we propose a new evaluation method whose results are visualized applying a Principal Component Analysis of the data, obtaining a simplified graphical method to compare different segmentation results. We have carried out an intensive study using several classic segmentation methods applied to a set of MRI simulated data of the brain with several noise and RF inhomogeneity levels, and also to real data, showing that the new measures proposed here and the results that we have obtained from the multidimensional evaluation, improve the robustness of the evaluation and provides better understanding about the difference between segmentation methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Solexa/Illumina short-read ultra-high throughput DNA sequencing technology produces millions of short tags (up to 36 bases) by parallel sequencing-by-synthesis of DNA colonies. The processing and statistical analysis of such high-throughput data poses new challenges; currently a fair proportion of the tags are routinely discarded due to an inability to match them to a reference sequence, thereby reducing the effective throughput of the technology. RESULTS: We propose a novel base calling algorithm using model-based clustering and probability theory to identify ambiguous bases and code them with IUPAC symbols. We also select optimal sub-tags using a score based on information content to remove uncertain bases towards the ends of the reads. CONCLUSION: We show that the method improves genome coverage and number of usable tags as compared with Solexa's data processing pipeline by an average of 15%. An R package is provided which allows fast and accurate base calling of Solexa's fluorescence intensity files and the production of informative diagnostic plots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Closely related species may be very difficult to distinguish morphologically, yet sometimes morphology is the only reasonable possibility for taxonomic classification. Here we present learning-vector-quantization artificial neural networks as a powerful tool to classify specimens on the basis of geometric morphometric shape measurements. As an example, we trained a neural network to distinguish between field and root voles from Procrustes transformed landmark coordinates on the dorsal side of the skull, which is so similar in these two species that the human eye cannot make this distinction. Properly trained neural networks misclassified only 3% of specimens. Therefore, we conclude that the capacity of learning vector quantization neural networks to analyse spatial coordinates is a powerful tool among the range of pattern recognition procedures that is available to employ the information content of geometric morphometrics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although increasing our knowledge of the properties of networks of cities is essential, these properties can be measured at the city level, and must be assessed by analyzing actor networks. The present volume focuses less on individual characteristics and more on the interactions of actors and institutions that create functional territories in which the structure of existing links constrains emerging links. Rather than basing explanations on external factors, the goal is to determine the extent to which network properties reflect spatial distributions and create local synergies at the meso level that are incorporated into global networks at the macro level where different geographical scales occur. The paper introduces the way to use the graphs structure to identify empirically relevant groups and levels that explain dynamics. It defines what could be called âeurooemulti-levelâeuro, âeurooemulti-scaleâeuro, or âeurooemultidimensionalâeuro networks in the context of urban geography. It explains how the convergence of the network multi-territoriality paradigm collaboratively formulated, and manipulated by geographers and computer scientists produced the SPANGEO project, which is exposed in this volume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theory of small-world networks as initiated by Watts and Strogatz (1998) has drawn new insights in spatial analysis as well as systems theory. The theoryâeuro?s concepts and methods are particularly relevant to geography, where spatial interaction is mainstream and where interactions can be described and studied using large numbers of exchanges or similarity matrices. Networks are organized through direct links or by indirect paths, inducing topological proximities that simultaneously involve spatial, social, cultural or organizational dimensions. Network synergies build over similarities and are fed by complementarities between or inside cities, with the two effects potentially amplifying each other according to the âeurooepreferential attachmentâeuro hypothesis that has been explored in a number of different scientific fields (Barabási, Albert 1999; Barabási A-L 2002; Newman M, Watts D, Barabàsi A-L). In fact, according to Barabási and Albert (1999), the high level of hierarchy observed in âeurooescale-free networksâeuro results from âeurooepreferential attachmentâeuro, which characterizes the development of networks: new connections appear preferentially close to nodes that already have the largest number of connections because in this way, the improvement in the network accessibility of the new connection will likely be greater. However, at the same time, network regions gathering dense and numerous weak links (Granovetter, 1985) or network entities acting as bridges between several components (Burt 2005) offer a higher capacity for urban communities to benefit from opportunities and create future synergies. Several methodologies have been suggested to identify such denser and more coherent regions (also called communities or clusters) in terms of links (Watts, Strogatz 1998; Watts 1999; Barabási, Albert 1999; Barabási 2002; Auber 2003; Newman 2006). These communities not only possess a high level of dependency among their member entities but also show a low level of âeurooevulnerabilityâeuro, allowing for numerous redundancies (Burt 2000; Burt 2005). The SPANGEO project 2005âeuro"2008 (SPAtial Networks in GEOgraphy), gathering a team of geographers and computer scientists, has included empirical studies to survey concepts and measures developed in other related fields, such as physics, sociology and communication science. The relevancy and potential interpretation of weighted or non-weighted measures on edges and nodes were examined and analyzed at different scales (intra-urban, inter-urban or both). New classification and clustering schemes based on the relative local density of subgraphs were developed. The present article describes how these notions and methods contribute on a conceptual level, in terms of measures, delineations, explanatory analyses and visualization of geographical phenomena.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reliable and objective assessment of chronic disease state has been and still is a very significant challenge in clinical medicine. An essential feature of human behavior related to the health status, the functional capacity, and the quality of life is the physical activity during daily life. A common way to assess physical activity is to measure the quantity of body movement. Since human activity is controlled by various factors both extrinsic and intrinsic to the body, quantitative parameters only provide a partial assessment and do not allow for a clear distinction between normal and abnormal activity. In this paper, we propose a methodology for the analysis of human activity pattern based on the definition of different physical activity time series with the appropriate analysis methods. The temporal pattern of postures, movements, and transitions between postures was quantified using fractal analysis and symbolic dynamics statistics. The derived nonlinear metrics were able to discriminate patterns of daily activity generated from healthy and chronic pain states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fetal MRI reconstruction aims at finding a high-resolution image given a small set of low-resolution images. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has considered several regularization terms s.a. Dirichlet/Laplacian energy, Total Variation (TV)- based energies and more recently non-local means. Although TV energies are quite attractive because of their ability in edge preservation, standard explicit steepest gradient techniques have been applied to optimize fetal-based TV energies. The main contribution of this work lies in the introduction of a well-posed TV algorithm from the point of view of convex optimization. Specifically, our proposed TV optimization algorithm or fetal reconstruction is optimal w.r.t. the asymptotic and iterative convergence speeds O(1/n2) and O(1/√ε), while existing techniques are in O(1/n2) and O(1/√ε). We apply our algorithm to (1) clinical newborn data, considered as ground truth, and (2) clinical fetal acquisitions. Our algorithm compares favorably with the literature in terms of speed and accuracy.