167 resultados para Structured Prediction
Resumo:
An ab initio structure prediction approach adapted to the peptide-major histocompatibility complex (MHC) class I system is presented. Based on structure comparisons of a large set of peptide-MHC class I complexes, a molecular dynamics protocol is proposed using simulated annealing (SA) cycles to sample the conformational space of the peptide in its fixed MHC environment. A set of 14 peptide-human leukocyte antigen (HLA) A0201 and 27 peptide-non-HLA A0201 complexes for which X-ray structures are available is used to test the accuracy of the prediction method. For each complex, 1000 peptide conformers are obtained from the SA sampling. A graph theory clustering algorithm based on heavy atom root-mean-square deviation (RMSD) values is applied to the sampled conformers. The clusters are ranked using cluster size, mean effective or conformational free energies, with solvation free energies computed using Generalized Born MV 2 (GB-MV2) and Poisson-Boltzmann (PB) continuum models. The final conformation is chosen as the center of the best-ranked cluster. With conformational free energies, the overall prediction success is 83% using a 1.00 Angstroms crystal RMSD criterion for main-chain atoms, and 76% using a 1.50 Angstroms RMSD criterion for heavy atoms. The prediction success is even higher for the set of 14 peptide-HLA A0201 complexes: 100% of the peptides have main-chain RMSD values < or =1.00 Angstroms and 93% of the peptides have heavy atom RMSD values < or =1.50 Angstroms. This structure prediction method can be applied to complexes of natural or modified antigenic peptides in their MHC environment with the aim to perform rational structure-based optimizations of tumor vaccines.
Resumo:
In the recent years, kernel methods have revealed very powerful tools in many application domains in general and in remote sensing image classification in particular. The special characteristics of remote sensing images (high dimension, few labeled samples and different noise sources) are efficiently dealt with kernel machines. In this paper, we propose the use of structured output learning to improve remote sensing image classification based on kernels. Structured output learning is concerned with the design of machine learning algorithms that not only implement input-output mapping, but also take into account the relations between output labels, thus generalizing unstructured kernel methods. We analyze the framework and introduce it to the remote sensing community. Output similarity is here encoded into SVM classifiers by modifying the model loss function and the kernel function either independently or jointly. Experiments on a very high resolution (VHR) image classification problem shows promising results and opens a wide field of research with structured output kernel methods.
Resumo:
ABSTRACT: BACKGROUND: Chest pain raises concern for the possibility of coronary heart disease. Scoring methods have been developed to identify coronary heart disease in emergency settings, but not in primary care. METHODS: Data were collected from a multicenter Swiss clinical cohort study including 672 consecutive patients with chest pain, who had visited one of 59 family practitioners' offices. Using delayed diagnosis we derived a prediction rule to rule out coronary heart disease by means of a logistic regression model. Known cardiovascular risk factors, pain characteristics, and physical signs associated with coronary heart disease were explored to develop a clinical score. Patients diagnosed with angina or acute myocardial infarction within the year following their initial visit comprised the coronary heart disease group. RESULTS: The coronary heart disease score was derived from eight variables: age, gender, duration of chest pain from 1 to 60 minutes, substernal chest pain location, pain increases with exertion, absence of tenderness point at palpation, cardiovascular risks factors, and personal history of cardiovascular disease. Area under the receiver operating characteristics curve was of 0.95 with a 95% confidence interval of 0.92; 0.97. From this score, 413 patients were considered as low risk for values of percentile 5 of the coronary heart disease patients. Internal validity was confirmed by bootstrapping. External validation using data from a German cohort (Marburg, n = 774) revealed a receiver operating characteristics curve of 0.75 (95% confidence interval, 0.72; 0.81) with a sensitivity of 85.6% and a specificity of 47.2%. CONCLUSIONS: This score, based only on history and physical examination, is a complementary tool for ruling out coronary heart disease in primary care patients complaining of chest pain.
Resumo:
Neutrality tests in quantitative genetics provide a statistical framework for the detection of selection on polygenic traits in wild populations. However, the existing method based on comparisons of divergence at neutral markers and quantitative traits (Q(st)-F(st)) suffers from several limitations that hinder a clear interpretation of the results with typical empirical designs. In this article, we propose a multivariate extension of this neutrality test based on empirical estimates of the among-populations (D) and within-populations (G) covariance matrices by MANOVA. A simple pattern is expected under neutrality: D = 2F(st)/(1 - F(st))G, so that neutrality implies both proportionality of the two matrices and a specific value of the proportionality coefficient. This pattern is tested using Flury's framework for matrix comparison [common principal-component (CPC) analysis], a well-known tool in G matrix evolution studies. We show the importance of using a Bartlett adjustment of the test for the small sample sizes typically found in empirical studies. We propose a dual test: (i) that the proportionality coefficient is not different from its neutral expectation [2F(st)/(1 - F(st))] and (ii) that the MANOVA estimates of mean square matrices between and among populations are proportional. These two tests combined provide a more stringent test for neutrality than the classic Q(st)-F(st) comparison and avoid several statistical problems. Extensive simulations of realistic empirical designs suggest that these tests correctly detect the expected pattern under neutrality and have enough power to efficiently detect mild to strong selection (homogeneous, heterogeneous, or mixed) when it is occurring on a set of traits. This method also provides a rigorous and quantitative framework for disentangling the effects of different selection regimes and of drift on the evolution of the G matrix. We discuss practical requirements for the proper application of our test in empirical studies and potential extensions.
Resumo:
The spontaneous activity of the brain shows different features at different scales. On one hand, neuroimaging studies show that long-range correlations are highly structured in spatiotemporal patterns, known as resting-state networks, on the other hand, neurophysiological reports show that short-range correlations between neighboring neurons are low, despite a large amount of shared presynaptic inputs. Different dynamical mechanisms of local decorrelation have been proposed, among which is feedback inhibition. Here, we investigated the effect of locally regulating the feedback inhibition on the global dynamics of a large-scale brain model, in which the long-range connections are given by diffusion imaging data of human subjects. We used simulations and analytical methods to show that locally constraining the feedback inhibition to compensate for the excess of long-range excitatory connectivity, to preserve the asynchronous state, crucially changes the characteristics of the emergent resting and evoked activity. First, it significantly improves the model's prediction of the empirical human functional connectivity. Second, relaxing this constraint leads to an unrealistic network evoked activity, with systematic coactivation of cortical areas which are components of the default-mode network, whereas regulation of feedback inhibition prevents this. Finally, information theoretic analysis shows that regulation of the local feedback inhibition increases both the entropy and the Fisher information of the network evoked responses. Hence, it enhances the information capacity and the discrimination accuracy of the global network. In conclusion, the local excitation-inhibition ratio impacts the structure of the spontaneous activity and the information transmission at the large-scale brain level.
Resumo:
CONTEXT: Several genetic risk scores to identify asymptomatic subjects at high risk of developing type 2 diabetes mellitus (T2DM) have been proposed, but it is unclear whether they add extra information to risk scores based on clinical and biological data. OBJECTIVE: The objective of the study was to assess the extra clinical value of genetic risk scores in predicting the occurrence of T2DM. DESIGN: This was a prospective study, with a mean follow-up time of 5 yr. SETTING AND SUBJECTS: The study included 2824 nondiabetic participants (1548 women, 52 ± 10 yr). MAIN OUTCOME MEASURE: Six genetic risk scores for T2DM were tested. Four were derived from the literature and two were created combining all (n = 24) or shared (n = 9) single-nucleotide polymorphisms of the previous scores. A previously validated clinic + biological risk score for T2DM was used as reference. RESULTS: Two hundred seven participants (7.3%) developed T2DM during follow-up. On bivariate analysis, no differences were found for all but one genetic score between nondiabetic and diabetic participants. After adjusting for the validated clinic + biological risk score, none of the genetic scores improved discrimination, as assessed by changes in the area under the receiver-operating characteristic curve (range -0.4 to -0.1%), sensitivity (-2.9 to -1.0%), specificity (0.0-0.1%), and positive (-6.6 to +0.7%) and negative (-0.2 to 0.0%) predictive values. Similarly, no improvement in T2DM risk prediction was found: net reclassification index ranging from -5.3 to -1.6% and nonsignificant (P ≥ 0.49) integrated discrimination improvement. CONCLUSIONS: In this study, adding genetic information to a previously validated clinic + biological score does not seem to improve the prediction of T2DM.
Resumo:
BACKGROUND AND PURPOSE: The study aims to assess the recanalization rate in acute ischemic stroke patients who received no revascularization therapy, intravenous thrombolysis, and endovascular treatment, respectively, and to identify best clinical and imaging predictors of recanalization in each treatment group. METHODS: Clinical and imaging data were collected in 103 patients with acute ischemic stroke caused by anterior circulation arterial occlusion. We recorded demographics and vascular risk factors. We reviewed the noncontrast head computed tomographies to assess for hyperdense middle cerebral artery and its computed tomography density. We reviewed the computed tomography angiograms and the raw images to determine the site and degree of arterial occlusion, collateral score, clot burden score, and the density of the clot. Recanalization status was assessed on recanalization imaging using Thrombolysis in Myocardial Ischemia. Multivariate logistic regressions were utilized to determine the best predictors of outcome in each treatment group. RESULTS: Among the 103 study patients, 43 (42%) received intravenous thrombolysis, 34 (33%) received endovascular thrombolysis, and 26 (25%) did not receive any revascularization therapy. In the patients with intravenous thrombolysis or no revascularization therapy, recanalization of the vessel was more likely with intravenous thrombolysis (P = 0·046) and when M1/A1 was occluded (P = 0·001). In this subgroup of patients, clot burden score, cervical degree of stenosis (North American Symptomatic Carotid Endarterectomy Trial), and hyperlipidemia status added information to the aforementioned likelihood of recanalization at the patient level (P < 0·001). In patients with endovascular thrombolysis, recanalization of the vessel was more likely in the case of a higher computed tomography angiogram clot density (P = 0·012), and in this subgroup of patients gender added information to the likelihood of recanalization at the patient level (P = 0·044). CONCLUSION: The overall likelihood of recanalization was the highest in the endovascular group, and higher for intravenous thrombolysis compared with no revascularization therapy. However, our statistical models of recanalization for each individual patient indicate significant variability between treatment options, suggesting the need to include this prediction in the personalized treatment selection.
Resumo:
Purpose: In primary prevention of cardiovascular disease (CVD), it is accepted that the intensity of risk factor treatment should be guided by the magnitude of absolute risk. Risk factors tools like Framingham risk score (FHS) or noninvasive atherosclerosis imaging tests are available to detect high risk subjects. However, these methods are imperfect and may misclassify a large number of individuals. The purpose of this prospective study was to evaluate whether the prediction of future cardiovascular events (CVE) can be improved when subclinical imaging atherosclerosis (SCATS) is combined with the FRS in asymptomatic subjects. Methods: Overall, 1038 asymptomatic subjects (413 women, 625 men, mean age 49.1±12.8 years) were assessed for their cardiovascular risk using the FRS. B-mode ultrasonography on carotid and femoral arteries was performed by two investigators to detect atherosclerotic plaques (focal thickening of intima-media > 1.2 mm) and to measure carotid intima-media thickness (C-IMT). The severity of SCATS was expressed by an ATS-burden Score (ABS) reflecting the number of the arterial sites with >1 plaques (range 0-4). CVE were defined as fatal or non fatal acute coronary syndrome, stroke, or angioplasty for peripheral artery disease. Results: during a mean follow-up of 4.9±3.1 years, 61 CVE were recorded. Event rates the rate of CVE increased significantly from 2.7% to 39.1% according to the ABS (p<0.001) and from 4% to 24.6% according to the quartiles of C-IMT. Similarly, FRS predicted CVE (p<0.001). When computing the angiographic markers of SCATS in addition of FRS, we observed an improvement of net reclassification rate of 16.6% (p< 0.04) for ABS as compared to 5.5% (p = 0.26) for C-IMT. Conclusion: these results indicate that the detection of subjects requiring more attention to prevent CVE can be significantly improved when using both FRS and SCATS imaging.
Resumo:
Studying patterns of species distributions along elevation gradients is frequently used to identify the primary factors that determine the distribution, diversity and assembly of species. However, despite their crucial role in ecosystem functioning, our understanding of the distribution of below-ground fungi is still limited, calling for more comprehensive studies of fungal biogeography along environmental gradients at various scales (from regional to global). Here, we investigated the richness of taxa of soil fungi and their phylogenetic diversity across a wide range of grassland types along a 2800 m elevation gradient at a large number of sites (213), stratified across a region of the Western Swiss Alps (700 km(2)). We used 454 pyrosequencing to obtain fungal sequences that were clustered into operational taxonomic units (OTUs). The OTU diversity-area relationship revealed uneven distribution of fungal taxa across the study area (i.e. not all taxa are everywhere) and fine-scale spatial clustering. Fungal richness and phylogenetic diversity were found to be higher in lower temperatures and higher moisture conditions. Climatic and soil characteristics as well as plant community composition were related to OTU alpha, beta and phylogenetic diversity, with distinct fungal lineages suggesting distinct ecological tolerances. Soil fungi, thus, show lineage-specific biogeographic patterns, even at a regional scale, and follow environmental determinism, mediated by interactions with plants.
Resumo:
The use of areal bone mineral density (aBMD) for fracture prediction may be enhanced by considering bone microarchitectural deterioration. Trabecular bone score (TBS) helped in redefining a significant subset of non-osteoporotic women as a higher risk group. INTRODUCTION: TBS is an index of bone microarchitecture. Our goal was to assess the ability of TBS to predict incident fracture. METHODS: TBS was assessed in 560 postmenopausal women from the Os des Femmes de Lyon cohort, who had a lumbar spine (LS) DXA scan (QDR 4500A, Hologic) between years 2000 and 2001. During a mean follow-up of 7.8 ± 1.3 years, 94 women sustained 112 fragility fractures. RESULTS: At the time of baseline DXA scan, women with incident fracture were significantly older (70 ± 9 vs. 65 ± 8 years) and had a lower LS_aBMD and LS_TBS (both -0.4SD, p < 0.001) than women without fracture. The magnitude of fracture prediction was similar for LS_aBMD and LS_TBS (odds ratio [95 % confidence interval] = 1.4 [1.2;1.7] and 1.6 [1.2;2.0]). After adjustment for age and prevalent fracture, LS_TBS remained predictive of an increased risk of fracture. Yet, its addition to age, prevalent fracture, and LS_aBMD did not reach the level of significance to improve the fracture prediction. When using the WHO classification, 39 % of fractures occurred in osteoporotic women, 46 % in osteopenic women, and 15 % in women with T-score > -1. Thirty-seven percent of fractures occurred in the lowest quartile of LS_TBS, regardless of BMD. Moreover, 35 % of fractures that occurred in osteopenic women were classified below this LS_TBS threshold. CONCLUSION: In conclusion, LS_aBMD and LS_TBS predicted fractures equally well. In our cohort, the addition of LS_TBS to age and LS_aBMD added only limited information on fracture risk prediction. However, using the lowest quartile of LS_TBS helped in redefining a significant subset of non-osteoporotic women as a higher risk group which is important for patient management.
Resumo:
BACKGROUND: Frailty, as defined by the index derived from the Cardiovascular Health Study (CHS index), predicts risk of adverse outcomes in older adults. Use of this index, however, is impractical in clinical practice. METHODS: We conducted a prospective cohort study in 6701 women 69 years or older to compare the predictive validity of a simple frailty index with the components of weight loss, inability to rise from a chair 5 times without using arms, and reduced energy level (Study of Osteoporotic Fractures [SOF index]) with that of the CHS index with the components of unintentional weight loss, poor grip strength, reduced energy level, slow walking speed, and low level of physical activity. Women were classified as robust, of intermediate status, or frail using each index. Falls were reported every 4 months for 1 year. Disability (> or =1 new impairment in performing instrumental activities of daily living) was ascertained at 4(1/2) years, and fractures and deaths were ascertained during 9 years of follow-up. Area under the curve (AUC) statistics from receiver operating characteristic curve analysis and -2 log likelihood statistics were compared for models containing the CHS index vs the SOF index. RESULTS: Increasing evidence of frailty as defined by either the CHS index or the SOF index was similarly associated with an increased risk of adverse outcomes. Frail women had a higher age-adjusted risk of recurrent falls (odds ratio, 2.4), disability (odds ratio, 2.2-2.8), nonspine fracture (hazard ratio, 1.4-1.5), hip fracture (hazard ratio, 1.7-1.8), and death (hazard ratio, 2.4-2.7) (P < .001 for all models). The AUC comparisons revealed no differences between models with the CHS index vs the SOF index in discriminating falls (AUC = 0.61 for both models; P = .66), disability (AUC = 0.64; P = .23), nonspine fracture (AUC = 0.55; P = .80), hip fracture (AUC = 0.63; P = .64), or death (AUC = 0.72; P = .10). Results were similar when -2 log likelihood statistics were compared. CONCLUSION: The simple SOF index predicts risk of falls, disability, fracture, and death as well as the more complex CHS index and may provide a useful definition of frailty to identify older women at risk of adverse health outcomes in clinical practice.
Resumo:
BACKGROUND: As embryo selection is not allowed by law in Switzerland, we need a single early scoring system to identify zygotes with high implantation potential and to select zygotes for fresh transfer or cryopreservation. The underlying aim is to maximize the cumulated pregnancy rate while limiting the number of multiple pregnancies. METHODS: In all, 613 fresh and 617 frozen-thawed zygotes were scored for proximity, orientation and centring of the pronuclei, cytoplasmic halo, and number and polarization of the nucleolar precursor bodies. From these individual scores, a cumulated pronuclear score (CPNS) was calculated. Correlation between CPNS and implantation was examined and compared between fresh and frozen-thawed zygotes. The effect of freezing on CPNS was also investigated. RESULTS: CPNS was positively associated with embryo implantation in both fresh and frozen zygotes. With similar CPNS, frozen zygotes presented implantation rates as high as those of fresh zygotes. Nucleolar precursor bodies pattern and cytoplasmic halo appeared as the most important factors predictive of implantation for both types of zygotes, while pronuclei position was specifically relevant for frozen-thawed zygotes. Freezing induced an alteration of most zygote parameters, resulting in a significantly lower CPNS and a lower pregnancy rate. CONCLUSIONS: CPNS may be used as a single prognostic tool for implantation of both fresh and frozen-thawed zygotes. Lower CPNS values of frozen-thawed zygotes may also be indicative of freezing damage to zygotes. Successful implantation of frozen zygotes despite lower CPNS suggests that they may recover after thawing and in vitro culture.