19 resultados para Strategic Alignment Model
Resumo:
Homology modeling is the most commonly used technique to build a three-dimensional model for a protein sequence. It heavily relies on the quality of the sequence alignment between the protein to model and related proteins with a known three dimensional structure. Alignment quality can be assessed according to the physico-chemical properties of the three dimensional models it produces.In this work, we introduce fifteen predictors designed to evaluate the properties of the models obtained for various alignments. They consist of an energy value obtained from different force fields (CHARMM, ProsaII or ANOLEA) computed on residue selected around misaligned regions. These predictors were evaluated on ten challenging test cases. For each target, all possible ungapped alignments are generated and their corresponding models are computed and evaluated.The best predictor, retrieving the structural alignment for 9 out of 10 test cases, is based on the ANOLEA atomistic mean force potential and takes into account residues around misaligned secondary structure elements. The performance of the other predictors is significantly lower. This work shows that substantial improvement in local alignments can be obtained by careful assessment of the local structure of the resulting models.
Resumo:
The goal of this dissertation is to find and provide the basis for a managerial tool that allows a firm to easily express its business logic. The methodological basis for this work is design science, where the researcher builds an artifact to solve a specific problem. In this case the aim is to provide an ontology that makes it possible to explicit a firm's business model. In other words, the proposed artifact helps a firm to formally describe its value proposition, its customers, the relationship with them, the necessary intra- and inter-firm infrastructure and its profit model. Such an ontology is relevant because until now there is no model that expresses a company's global business logic from a pure business point of view. Previous models essentially take an organizational or process perspective or cover only parts of a firm's business logic. The four main pillars of the ontology, which are inspired by management science and enterprise- and processmodeling, are product, customer interface, infrastructure and finance. The ontology is validated by case studies, a panel of experts and managers. The dissertation also provides a software prototype to capture a company's business model in an information system. The last part of the thesis consists of a demonstration of the value of the ontology in business strategy and Information Systems (IS) alignment. Structure of this thesis: The dissertation is structured in nine parts: Chapter 1 presents the motivations of this research, the research methodology with which the goals shall be achieved and why this dissertation present a contribution to research. Chapter 2 investigates the origins, the term and the concept of business models. It defines what is meant by business models in this dissertation and how they are situated in the context of the firm. In addition this chapter outlines the possible uses of the business model concept. Chapter 3 gives an overview of the research done in the field of business models and enterprise ontologies. Chapter 4 introduces the major contribution of this dissertation: the business model ontology. In this part of the thesis the elements, attributes and relationships of the ontology are explained and described in detail. Chapter 5 presents a case study of the Montreux Jazz Festival which's business model was captured by applying the structure and concepts of the ontology. In fact, it gives an impression of how a business model description based on the ontology looks like. Chapter 6 shows an instantiation of the ontology into a prototype tool: the Business Model Modelling Language BM2L. This is an XML-based description language that allows to capture and describe the business model of a firm and has a large potential for further applications. Chapter 7 is about the evaluation of the business model ontology. The evaluation builds on literature review, a set of interviews with practitioners and case studies. Chapter 8 gives an outlook on possible future research and applications of the business model ontology. The main areas of interest are alignment of business and information technology IT/information systems IS and business model comparison. Finally, chapter 9 presents some conclusions.
Resumo:
Diagrams and tools help to support task modelling in engi- neering and process management. Unfortunately they are unfit to help in a business context at a strategic level, because of the flexibility needed for creative thinking and user friendly interactions. We propose a tool which bridges the gap between freedom of actions, encouraging creativity, and constraints, allowing validation and advanced features.
Resumo:
PURPOSE: Statistical shape and appearance models play an important role in reducing the segmentation processing time of a vertebra and in improving results for 3D model development. Here, we describe the different steps in generating a statistical shape model (SSM) of the second cervical vertebra (C2) and provide the shape model for general use by the scientific community. The main difficulties in its construction are the morphological complexity of the C2 and its variability in the population. METHODS: The input dataset is composed of manually segmented anonymized patient computerized tomography (CT) scans. The alignment of the different datasets is done with the procrustes alignment on surface models, and then, the registration is cast as a model-fitting problem using a Gaussian process. A principal component analysis (PCA)-based model is generated which includes the variability of the C2. RESULTS: The SSM was generated using 92 CT scans. The resulting SSM was evaluated for specificity, compactness and generalization ability. The SSM of the C2 is freely available to the scientific community in Slicer (an open source software for image analysis and scientific visualization) with a module created to visualize the SSM using Statismo, a framework for statistical shape modeling. CONCLUSION: The SSM of the vertebra allows the shape variability of the C2 to be represented. Moreover, the SSM will enable semi-automatic segmentation and 3D model generation of the vertebra, which would greatly benefit surgery planning.